The Solar Wind is Stripping Oxygen and Carbon Away From Venus

Artist's impression of the European Space Agency's BepiColombo mission in operation around Mercury. Credit: Astrium

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second (and most advanced) mission to visit Mercury, the least explored planet in the Solar System. With two probes and an advanced suite of scientific instruments, the mission addressed several unresolved questions about Mercury, including the origin of its magnetic field, the depressions with bright material around them (“hollows”), and water ice around its poles. As it turns out, BepiColombo revealed some interesting things about Venus during its brief flyby.

Specifically, the two probes studied a previously unexplored region of Venus’ magnetic environment when they made their second pass on August 10th, 2021. In a recent study, an international team of scientists analyzed the data and found traces of carbon and oxygen being stripped from the upper layers of Venus’ atmosphere and accelerated to speeds where they can escape the planet’s gravitational pull. This data could provide new clues about atmospheric loss and how interactions between solar wind and planetary atmospheres influence planetary evolution.

Continue reading “The Solar Wind is Stripping Oxygen and Carbon Away From Venus”

You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field

Artist's impression of a "hot Jupiter" orbiting close to a Sun-like star. Credit: NASA

In 2011, astronomers with the Wide Angle Search for Planets (WASP) consortium detected a gas giant orbiting very close to a Sun-like (G-type) star about 700 light-years away. This planet is known as WASP-39b (aka. “Bocaprins”), one of many “hot Jupiters” discovered in recent decades that orbits its star at a distance of less than 5% the distance between the Earth and the Sun (0.05 AU). In 2022, shortly after the James Webb Space Telescope (JWST) it became the first exoplanet to have carbon dioxide and sulfur dioxide detected in its atmosphere.

Alas, researchers have not constrained all of WASP-39b’s crucial details (particularly its size) based on the planet’s light curves, as observed by Webb. which is holding up more precise data analyses. In a new study led by the Max Planck Institute for Solar System Research (MPS), an international team has shown a way to overcome this obstacle. They argue that considering a parent star’s magnetic field, the true size of an exoplanet in orbit can be determined. These findings are likely to significantly impact the rapidly expanding field of exoplanet study and characterization.

Continue reading “You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field”

Stellar Winds Coming From Other Stars Measured for the First Time

Infrared image of the shockwave created by the massive giant star Zeta Ophiuchi in an interstellar dust cloud. Credit: NASA/JPL-Caltech; NASA and The Hubble Heritage Team (STScI/AURA); C. R. O'Dell, Vanderbilt University

An international research team led by the University of Vienna has made a major breakthrough. In a study recently published in Nature Astronomy, they describe how they conducted the first direct measurements of stellar wind in three Sun-like star systems. Using X-ray emission data obtained by the ESA’s X-ray Multi-Mirror-Newton (XMM-Newton) of these stars’ “astrospheres,” they measured the mass loss rate of these stars via stellar winds. The study of how stars and planets co-evolve could assist in the search for life while also helping astronomers predict the future evolution of our Solar System.

Continue reading “Stellar Winds Coming From Other Stars Measured for the First Time”

Formation-Flying Spacecraft Could Probe the Solar System for New Physics

A solar flare erupts on the Sun. Credit: NASA/GSFC/SDO

It’s an exciting time for the fields of astronomy, astrophysics, and cosmology. Thanks to cutting-edge observatories, instruments, and new techniques, scientists are getting closer to experimentally verifying theories that remain largely untested. These theories address some of the most pressing questions scientists have about the Universe and the physical laws governing it – like the nature of gravity, Dark Matter, and Dark Energy. For decades, scientists have postulated that either there is additional physics at work or that our predominant cosmological model needs to be revised.

While the investigation into the existence and nature of Dark Matter and Dark Energy is ongoing, there are also attempts to resolve these mysteries with the possible existence of new physics. In a recent paper, a team of NASA researchers proposed how spacecraft could search for evidence of additional physical within our Solar Systems. This search, they argue, would be assisted by the spacecraft flying in a tetrahedral formation and using interferometers. Such a mission could help resolve a cosmological mystery that has eluded scientists for over half a century.

Continue reading “Formation-Flying Spacecraft Could Probe the Solar System for New Physics”

Here's the Total Solar Eclipse, Seen From Space

Credit: NASA/Keegan Barber

On Monday, April 8th, people across North America witnessed a rare celestial event known as a total solar eclipse. This phenomenon occurs when the Moon passes between the Sun and Earth and blocks the face of the Sun for a short period. The eclipse plunged the sky into darkness for people living in the Canadian Maritimes, the American Eastern Seaboard, parts of the Midwest, and northern Mexico. Fortunately for all, geostationary satellites orbiting Earth captured images of the Moon’s shadow as it moved across North America.

Continue reading “Here's the Total Solar Eclipse, Seen From Space”

The World's Largest Digital Camera is Complete. It Will Go Into the Vera Rubin Observatory

Researchers examine the LSST Camera. The camera will soon be shipped to Chile, where it will be the heart of Vera C. Rubin Observatory (right). Credit: Vera C. Rubin Observatory/DOE/SLAC

The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), was formally proposed in 2001 to create an astronomical facility that could conduct deep-sky surveys using the latest technology. This includes a wide-field reflecting telescope with an 8.4-meter (~27.5-foot) primary mirror that relies on a novel three-mirror design (the Simonyi Survey Telescope) and a 3.2-megapixel Charge-Coupled Device (CCD) imaging camera (the LSST Camera). Once complete, Rubin will perform a 10-year survey of the southern sky known as the Legacy Survey of Space and Time (LSST).

While construction on the observatory itself did not begin until 2015, work began on the telescope’s digital cameras and primary mirror much sooner (in 2004 and 2007, respectively). After two decades of work, scientists and engineers at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory and their collaborators announced the completion of the LSST Camera – the largest digital camera ever constructed. Once mounted on the Simonyi Survey Telescope, this camera will help researchers observe our Universe in unprecedented detail.

Continue reading “The World's Largest Digital Camera is Complete. It Will Go Into the Vera Rubin Observatory”

Webb Sees a Galaxy Awash in Star Formation

Starburst galaxy M82 was observed by the Hubble Space Telescope in 2006, which showed the galaxy’s edge-on spiral disk, shredded clouds, and hot hydrogen gas. The James Webb Space Telescope has observed M82’s core, capturing in unprecedented detail the structure of the galactic wind and characterizing individual stars and star clusters. Credit: NASA/ESA/CSA/STScI/Alberto Bolatto (UMD)

Since it began operations in July 2022, the James Webb Space Telescope (JWST) has fulfilled many scientific objectives. In addition to probing the depths of the Universe in search of galaxies that formed shortly after the Big Bang, it has also provided the clearest and most detailed images of nearby galaxies. In the process, Webb has provided new insight into the processes through which galaxies form and evolve over billions of years. This includes galaxies like Messier 82 (M82), a “starburst galaxy” located about 12 million light-years away in the constellation Ursa Major.

Also known as the “Cigar Galaxy” because of its distinctive shape, M82 is a rather compact galaxy with a very high star formation rate. Roughly five times that of the Milky Way, this is why the core region of M82 is over 100 times as bright as the Milky Way’s. Combined with the gas and dust that naturally obscures visible light, this makes examining M82’s core region difficult. Using the extreme sensitivity of Webb‘s Near-Infrared Camera (NIRCam), a team led by the University of Maryland observed the central region of this starburst galaxy to examine the physical conditions that give rise to new stars.

Continue reading “Webb Sees a Galaxy Awash in Star Formation”

China's Relay Satellite is in Lunar Orbit

Animation of Queqiao-2 satellite establishing orbit around the Moon. Credit: CGTN

On March 20th, China’s Queqiao-2 (“Magpie Bridge-2”) satellite launched from the Wenchang Space Launch Site LC-2 on the island of Hainan (in southern China) atop a Long March-8 Y3 carrier rocket. This mission is the second in a series of communications relay and radio astronomy satellites designed to support the fourth phase of the Chinese Lunar Exploration Program (Chang’e). On March 24th, after 119 hours in transit, the satellite reached the Moon and began a perilune braking maneuver at a distance of 440 km (~270 mi) from the lunar surface.

The maneuver lasted 19 minutes, after which the satellite entered lunar orbit, where it will soon relay communications from missions on the far side of the Moon around the South Pole region. This includes the Chang’e-4 lander and rover and will extend to the Chang’e-6 sample-return mission, which is scheduled to launch in May. It will also assist Chang’e-7 and -8 (scheduled for 2026 and 2028, respectively), consisting of an orbiter, rover, and lander mission, and a platform that will test technologies necessary for the construction of the International Lunar Research Station (ILRS).

Continue reading “China's Relay Satellite is in Lunar Orbit”

Lunar Night Permanently Ends the Odysseus Mission

Image of Odysseus moon landing
This image shows one of the Odysseus lander's legs breaking due to the shock of first contact on the moon. (Credit: Intuitive Machines)

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space Center in Florida atop a SpaceX Falcon 9 rocket. On February 22nd, the spacecraft – codenamed Odysseus (or “Odie”) – became the first American-built vehicle to soft-land on the lunar surface since the Apollo 17 mission in 1972. While the landing was a bit bumpy (Odysseus fell on its side), the IM-1 mission successfully demonstrated technologies and systems that will assist NASA in establishing a “sustained program of lunar exploration and development.”

After seven days of operation on the lunar surface, Intuitive Machines announced on February 29th that the mission had ended with the onset of lunar night. While the lander was not intended to remain operational during the lunar night, flight controllers at Houston set Odysseus into a configuration that would “call home” if it made it through the two weeks of darkness. As of March 23rd, the company announced that their flight controllers’ predictions were correct and that Odie would not be making any more calls home.

Continue reading “Lunar Night Permanently Ends the Odysseus Mission”

DART Changed the Shape of Asteroid Dimorphos, not Just its Orbit

The asteroid Dimorphos was captured by NASA’s DART mission just two seconds before the spacecraft struck its surface on Sept. 26, 2022. Observations of the asteroid before and after impact suggest it is a loosely packed “rubble pile” object. Credit: NASA/JHUAPL

On September 26th, 2022, NASA’s Double Asteroid Redirection Test (DART) collided with the asteroid Dimorphos, a moonlet that orbits the larger asteroid Didymos. The purpose of this test was to evaluate a potential strategy for planetary defense. The demonstration showed that a kinetic impactor could alter the orbit of an asteroid that could potentially impact Earth someday – aka. Potentially Hazardous Asteroid (PHA). According to a new NASA-led study, the DART mission’s impact not only altered the orbit of the asteroid but also its shape!

Continue reading “DART Changed the Shape of Asteroid Dimorphos, not Just its Orbit”