NASA Announces the Discovery of Water in the Sunlit Parts of the Moon

For decades, astronomers have speculated that there may be water on the Moon. In recent years, this speculation was confirmed one orbiting satellite after another detected water ice around the Moon’s southern polar region. Within this part of the lunar surface, known as the South-Pole Aitken Basin, water ice is able to persist because of the many permanently-shadowed craters that are located there.

But until now, scientists were operating under the assumption that lunar water was only to be found in permanently shadowed craters. But thanks to NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), water has been observed on the sunlit side of the Moon for the first time. This discovery indicates that water may be distributed all across the lunar surface, and not limited to the dark corners.

Continue reading “NASA Announces the Discovery of Water in the Sunlit Parts of the Moon”

Galaxies Grew Quickly and Early On in the Universe

The behaviour of galaxies in the early Universe attracts a lot of attention from researchers. In fact, everything about the early Universe is under intense scientific scrutiny for obvious reasons. But unlike the Universe’s first stars, which have all died long ago, the galaxies we see around us—including our own—have been here since the early days.

Current scientific thinking says that in the early days of the Universe, the galaxies grew slowly, taking billions of years to become what they are now. But new observations show that might not be the case.

Continue reading “Galaxies Grew Quickly and Early On in the Universe”

Something other than just gravity is contributing to the shape of dark matter halos

It now seems clear that dark matter interacts more than just gravitationally. Earlier studies have hinted at this, and a new study supports the idea even further. What’s interesting about this latest work is that it studies dark matter interactions through entropy.

Continue reading “Something other than just gravity is contributing to the shape of dark matter halos”

NASA releases new spooky space-themed posters about extreme places in the Universe

One of six new spooky posters from NASA’s Galaxy of Horrors. Credit NASA-JPL/Caltech

While ghouls and goblins may provide the ghastly delights many of us associate with this time of year, NASA has just released a series of spooky space-themed posters that are more unearthly than any monsters or scary stories told around terrestrial campfires. This year for Halloween, the space agency has released a series of spine-tingling posters called Galaxy of Horrors. The terrifying destinations highlighted within are all based on real locations in the Universe. 

Continue reading “NASA releases new spooky space-themed posters about extreme places in the Universe”

New Simulation Shows Exactly What’s Happening as Neutron Stars Merge

Neutron stars are the remnants of massive stars that explode as supernovae at the end of their fusion lives. They’re super-dense cores where all of the protons and electrons are crushed into neutrons by the overpowering gravity of the dead star. They’re the smallest and densest stellar objects, except for black holes, and possibly other arcane, hypothetical objects like quark stars.

When two neutron stars merge, we can detect the resulting gravitational waves. But some aspects of these mergers are poorly-understood. One question surrounds short-lived gamma-ray bursts from these mergers. Previous studies have shown that these bursts may come from the decay of heavy elements produced in a neutron star merger.

A new study strengthens our understanding of these complex mergers and introduces a model that explains the gamma rays.

Continue reading “New Simulation Shows Exactly What’s Happening as Neutron Stars Merge”

Room-temperature Superconductivity Achieved for the First Time, but There’s a Catch

One of the most interesting things about space exploration is how many technologies have an impact on our ability to reach farther.  New technologies that might not immediately be used in space can still eventually have a profound long-term impact.  On the other hand, everyone knows some technologies will be immediately game changing.  Superconductors, or materials that do not have any electrical resistance, are one of the technologies that have the potential to be game changing.  However, hurdles to their practical use have limited their applicability to a relatively small sub-set of applications, like magnetic resonance imaging devices and particle accelerators.  But another major hurdle to the broad use of superconductors has now been cleared – a lab at the University of Rochester (UR) has just developed one that works at almost room temperature.  The big caveat is it has to be under pressure similar to that in the Earth’s core.

Continue reading “Room-temperature Superconductivity Achieved for the First Time, but There’s a Catch”

The Youngest Stellar Disk Ever Seen, Just 500,000 Years Old

Unless you’re reading this in an aircraft or the International Space Station, then you’re currently residing on the surface of a planet. You’re here because the planet is here. But how did the planet get here? Like a rolling snowball picking up more snow, planets form from loose dust and gas surrounding young stars. As the planets orbit, their gravity draws in more of the lose material and they grow in mass. We’re not certain when the process of planet formation begins in orbit of new stars, but we have incredible new insights from one of the youngest solar systems ever observed called IRS 63.

The Rho Ophiuchi cloud complex is a nebula of gas and dust that is located in the constellation Ophiuchus. It is one of the closest star-forming regions to the Solar System and where the young star system IRS 63 was observed

Primordial Soup

Swirling in orbit of young stars (or protostars) are massive disks of dust and gas called circumstellar disks. These disks are dense enough to be opaque hiding young solar systems from visible light. However, energy emanating from the protostar heats the dust which then glows in infrared radiation which more easily penetrates obstructions than wavelengths of visible light. In fact, the degree to which a newly forming star system is observed in either visible or infrared light determines its classification. Class 0 protostars are completely enshrouded and can only be observed in submillimeter wavelengths corresponding to far-infrared and microwave light. Class I protostars, are observable in the far-infrared, Class II in near-infrared/red, and finally a Class III protostar’s surface and solar system can be observed in visible light as the remaining dust and gas is either blown away by the increasing energy of the star AND/OR has formed into PLANETS! That’s where we came from. That leftover material orbiting newly forming stars is what accumulates to form US. The whole process from Class 0 to Class III, when the solar system leaves its cocoon of dust and joins the galaxy, is about 10 million years. But at what stage does planet formation begin? The youngest circumstellar disks we’d observed are a million years old and had shown evidence that planetary formation had already begun. The recently observed IRS 63 is less than 500,000 years old – Class I – and shows signs of possible planet formation. The excitement? We were surprised to see evidence of planetary formation so early in the life of a solar system.

IRS 63 Circumstellar Disk C. ALMA/ Segura-Cox et al. 2020
Continue reading “The Youngest Stellar Disk Ever Seen, Just 500,000 Years Old”

ISS Crew Return Safely to Earth

On the evening of Wednesday, Oct. 21st, the crew of Expedition 63 finally returned to Earth after spending 196 days in space. It all began when NASA astronaut Chris Cassidy (commander) and Russian cosmonauts Ivan Vagner and Anatoly Ivanishin (both flight engineers) departed the International Space Station (ISS) aboard their Soyuz spacecraft at 07:32 PM EDT (04:32 PM PDT) and landed in Kazakhstan by 10:54 PM EDT (07:54 PM PDT).

Continue reading “ISS Crew Return Safely to Earth”