Languages Will Change Significantly on Interstellar Flights

It’s a captivating idea: build an interstellar ark, fill it with people, flora, and fauna of every kind, and set your course for a distant star! The concept is not only science fiction gold, its been the subject of many scientific studies and proposals. By building a ship that can accommodate multiple generations of human beings (aka. a Generation Ship), humans could colonize the known Universe.

But of course, there are downsides to this imaginative proposal. During such a long voyage, multiple generations of people will be born and raised inside a closed environment. This could lead to all kinds of biological issues or mutations that we simply can’t foresee. But according to a new study by a team of linguistics professors, there’s something else that will be subject to mutation during such a voyage – language itself!

Continue reading “Languages Will Change Significantly on Interstellar Flights”

Although InSight’s Mole is Completely Buried, it Might be Stuck Again

You’ve gotta hand it to NASA, and to the German Aerospace Center (DLR.) They’ve been struggling for over a year to get the InSight Lander’s Mole working. There’ve been setbacks, then progress, then more setbacks, as they try to get the Mole deep enough to do its job.

Now the Mole is finally buried completely in the Martian surface, but it might still be stuck.

Continue reading “Although InSight’s Mole is Completely Buried, it Might be Stuck Again”

What Telescope Will Be Needed to See the First Stars in the Universe? The Ultimately Large Telescope

The oldest stars in the Universe are cloaked in darkness. Their redshift is so high, we can only wonder about them. The James Webb Space Telescope will be our most effective telescope for observing the very early Universe, and should observe out to z = 15. But even it has limitations.

To observe the Universe’s very first stars, we need a bigger telescope. The Ultimately Large Telescope.

Continue reading “What Telescope Will Be Needed to See the First Stars in the Universe? The Ultimately Large Telescope”

Detecting the Neutrinos From a Supernova That’s About to Explode

Neutrinos are puzzling things. They’re tiny particles, almost massless, with no electrical charge. They’re notoriously difficult to detect, too, and scientists have gone to great lengths to detect them. The IceCube Neutrino Observatory, for instance, tries to detect neutrinos with strings of detectors buried down to a depth of 2450 meters (8000 ft.) in the dark Antarctic ice.

How’s that for commitment.

Continue reading “Detecting the Neutrinos From a Supernova That’s About to Explode”

A Tabletop-sized Experiment Could Help in the Search for Dark Matter

Dark matter is one of the least understood aspects in physics.  The evidence for dark matter is from its gravitational influence on galactic scales which cannot be explained by the presence of conventional matter.  Despite its large gravitational interactions, it is notoriously difficult to learn about dark matter as it does not interact with electromagnetic fields, hence the name of “dark” matter.

But just because it is difficult to get it to interact with anything on the electromagnetic spectrum does not mean it is impossible to detect other feeble interactions it may have.  A team of theoretical physicists from Caltech have recently proposed a novel type of experiment that may just hold the key to understanding dark matter with specific types of interactions.

Continue reading “A Tabletop-sized Experiment Could Help in the Search for Dark Matter”

Electron Rocket’s 13th Launch Failed, Destroying its Satellite Payload

This past weekend (June 5th), the California and New Zealand-based aerospace company Rocket Lab suffered a terrible accident. During the 13th launch of their Electron rocket, an anomaly caused the second stage of the rocket to explode in midair. Luckily, there were no injuries, but the explosion did claim the mission payload, which consisted of satellites and commercial payloads for three different companies.

Continue reading “Electron Rocket’s 13th Launch Failed, Destroying its Satellite Payload”

The Corona Australis Molecular Cloud. Normally this Looks Like a Dark Blob in the Sky. But in Infrared, it Looks Like This.

The Corona Australis is a constellation in the southern hemisphere. It’s name literally means “southern crown.” One of its features is the Corona Australis molecular cloud, home to a star-forming region containing young stars and proto-stars. It’s one of the closest star-forming regions to us, only about 430 light years away.

The ESA has given us a new composite image of the cloud with data from the Herschel Space Observatory and the Planck Space Observatory.

Continue reading “The Corona Australis Molecular Cloud. Normally this Looks Like a Dark Blob in the Sky. But in Infrared, it Looks Like This.”