Europa Clipper Tests its Star Tracker Navigation System

Artist's concept of a Europa Clipper mission. Credit: NASA/JPL

On October 14th, 2024, NASA’s Europa Clipper mission launched atop a Falcon Heavy rocket from Launch Complex 39A at the Kennedy Space Center in Florida. It will spend the next few years traveling 2.9 billion km (1.8 billion mi) to reach Jupiter’s moon Europa, arriving in April 2030. Once it arrives in the system, the probe will establish orbit and conduct 49 close flybys of this “Ocean World” and search for chemical elements that could indicate the presence of life (biosignatures) in the moon’s interior. By July 2031, it will be joined by the ESA’s Jupiter Icy Moon Explorer (JUICE), which will conduct a similar search around Callisto and Ganymede.

As is customary, the mission team has been checking and calibrating the Clipper’s instruments since launch to ensure everything is in working order. The latest test involved the probe’s stellar reference units (or star trackers), which captured and transmitted the Europa Clipper’s first images of space. These two imaging cameras look for stars, which mission controllers use to help orient the spacecraft. This is critical when pointing the probe’s telecommunications antennas toward Earth so it can send and receive critical mission data.

Continue reading “Europa Clipper Tests its Star Tracker Navigation System”

The Moon has Two Grand Canyons, Carved in Minutes by an Asteroid Impact

Artistic rendering of astronauts standing on the edge of the Vallis Schrödinger canyon. It extends out from the Schrödinger impact basin. Credit: Lunar and Planetary Institute/Michael Carroll.
Artistic rendering of astronauts standing on the edge of the Vallis Schrödinger canyon. It extends out from the Schrödinger impact basin. Credit: Lunar and Planetary Institute/Michael Carroll.

Our Moon continues to surprise us with amazing features. Scientists recently shared new information about two canyons that branch out from a major lunar impact. The site is the Schrödinger basin near the Moon’s South Pole. It formed when an asteroid or possibly even a leftover planetesimal slammed into the surface. It took only minutes to dig out that huge crater and split the landscape to make two huge rifts that extend from the site.

Continue reading “The Moon has Two Grand Canyons, Carved in Minutes by an Asteroid Impact”

Is Methane the Key to Finding Life on Other Worlds?

Artist’s rendition for NASA's Habitable Worlds Observatory, which is slated to launch in the 2040s with the goal of analyzing 25 potentially habitable exoplanets for biosignatures along with conducting other incredible science about our place in the cosmos. (Credit: NASA's Goddard Space Flight Center Conceptual Image Lab)

How would detecting methane help astronomers identify if exoplanets, or even exomoons, have life as we know it, or even as we don’t know it? This is what a recent study published in The Astronomical Journal hopes to address as a team of researchers led by the NASA Goddard Space Flight Center investigated how a method called BARBIE (Bayesian Analysis for Remote Biosignature Identification on exoEarths) could be used on a future space mission to detect methane (CH4) on Earth-like exoplanets in optical (visible) and near-infrared (NIR) wavelengths. This study builds on past studies using BARBIE, known as BARBIE 1 and BARBIE 2, and has the potential to help scientists and engineers develop new methods for finding life beyond Earth and throughout the cosmos.

Continue reading “Is Methane the Key to Finding Life on Other Worlds?”

Space Junk Could Re-Enter the Atmosphere in Busy Flight Areas

Debris and defunct launcher stages in the Geostationary ring. Credit: ESA/ID&Sense/ONiRiXEL

In the more than 60 years since the Space Age began, humans have sent more than 6,740 rockets to space. According to the ESA’s Space Debris Office, this has resulted in 56,450 objects in orbit; about 36,860 of these objects are regularly tracked and maintained in a catalog, while 10,200 are still functioning. The rest is a combination of spent rocket stages, defunct satellites, and pieces of debris caused by unused propellant exploding and orbital collisions. This is leading to a cascade effect known as Kessler Syndrome, where the amount of debris in orbit will lead to more collisions and more debris.

What’s worse, the situation is only projected to get worse since more launches are expected with every passing year. Last year, space agencies and commercial space companies conducted a record-breaking 263 launches, with the U.S. (158) and China (68) leading the way. And with future break-ups occurring at historic rates of 10 to 11 per year, the number of debris objects in orbit will continue to increase. According to a new study by a team from the University of British Columbia (UBC), this also means that debris falling to Earth will have a 1 in 4 chance per year of entering busy airspace.

Continue reading “Space Junk Could Re-Enter the Atmosphere in Busy Flight Areas”

There’s a Way to Make Ringworlds and Dyson Spheres Stable

Artist's illustration of a dyson sphere

The idea of Dyson Sphere’s has been around for decades. When Freeman Dyson explored the concept he acknowledged that they may not be a physical sphere but could be a swarm of satellites in a spherical configuration around a star. The challenge with a solid sphere is that its orbit will not be stable leading to its destruction. A new paper casts a new view on that though and proposes a way that a rigid sphere could be stable after all. The idea suggests that a binary star system, where the mass ratio between the two objects is small, the sphere may be stable. 

Continue reading “There’s a Way to Make Ringworlds and Dyson Spheres Stable”

Water Arrived in the Final Stages of Earth's Formation

Artist concept of Earth during the Late Heavy Bombardment period. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab.

Roughly 4.6 billion years ago, the Sun was born from the gas and dust of a nebula that underwent gravitational collapse. The remaining gas and dust settled into a protoplanetary disk that slowly accreted to form the planets, including Earth. About 4.5 billion years ago, our planet was impacted by a Mars-sized body (Theia), which led to the formation of the Moon. According to current theories, water was introduced to Earth and the inner planets by asteroids and comets that permeated the early Solar System.

The timing of this event is of major importance since the introduction of water was key to the origin of life on Earth. Exactly when this event occurred has been a mystery for some time, but astronomers generally thought it had arrived early during Earth’s formation. According to a recent study by a team led by scientists from the University of Rutgers-New Brunswick, water may have arrived near “late accretion” – the final stages of Earth’s formation. These findings could seriously affect our understanding of when life first emerged on Earth.

Continue reading “Water Arrived in the Final Stages of Earth's Formation”

An Amazing JWST Image of a Protostar

Herbig-Haro 30. Credit: JWST
Herbig-Haro 30. Credit: JWST

The James Webb Space Telescope (JWST) has been giving us a fabulous new view on the universe since its launch. This new image of the protostar HH30 is in amazing new detail thanks to the JWST. It was first discovered using the Hubble Space Telescope but this Herbig-Haro object, which is a dark molecular cloud, is a perfect object for JWST. The image shows the protoplanetary disk seen edge on with a conical outflow of gas and dust with a narrow jet blasting out into space.

Continue reading “An Amazing JWST Image of a Protostar”

There Could Be a Supermassive Black Hole in the Large Magellanic Cloud Hurling Stars at the Milky Way

This beautiful image shows the Large and Small Magellanic Cloud above the ESO's Paranal Observatory and the four Auxiliary Telescopes of the Very Large Telescope (VLT) Array. New research shows that the LMC may harbour a supermassive black hole that's responsible for some of the Milky Way's hypervelocity stars. Image Credit: By ESO/J. Colosimo - http://www.eso.org/public/images/potw1511a/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=38973313

Hypervelocity stars (HVSs) were first theorized to exist in the late 1980s. In 2005, the first discoveries were confirmed. HVSs travel much faster than normal stars, and sometimes, they can exceed the galactic escape velocity. Astronomers estimate that the Milky Way contains about 1,000 HVSs, and new research shows that some of these originate in the Milky Way’s satellite galaxy, the Large Magellanic Cloud (LMC).

Does the LMC have a supermassive black hole (SMBH) that’s ejecting some HVSs into the Milky Way?

Continue reading “There Could Be a Supermassive Black Hole in the Large Magellanic Cloud Hurling Stars at the Milky Way”

Uranus’ Moon Ariel has Deep Gashes, Could Reveal its Interior

Voyager 2 captured this image of Uranus' moon Ariel in 1986 from 130,000 km away. New research based largely on this image hints at the nature of the moon's interior. Image Credit: By NASA/JPL - https://www.jpl.nasa.gov/images/pia00037-ariel-at-voyager-closest-approach, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1110562

We’ve only gotten one close-up view of Uranus and its moons, and it happened decades ago. In 1986, Voyager 2 performed a flyby of Uranus from about 81,500 km (50,600 mi) of the planet’s cloud tops. It was 130,000 km (80,000 mi) away from Uranus’ moon, Ariel, when it captured the leading image. It showed some unusual features that scientists are still puzzling over.

What do they reveal about the moon’s interior?

Continue reading “Uranus’ Moon Ariel has Deep Gashes, Could Reveal its Interior”

A Recent Impact on Mars Shook the Planet to Its Mantle

New research suggests an impact recently rattled Mars deeper than thought.

Hirise
HiRISE images a recent impact crater in the Cerberus Fossae region, seen on March 4, 2021. Credit: NASA/MRO/HiRISE

Something really rang the Red Planet’s bell. Research involving two NASA missions—the Mars Reconnaissance Orbiter, and the late InSight lander—has shed light on meteorite impacts and the seismic signals they produce. In a crucial finding, these signals may penetrate deeper inside Mars than previously thought. This could change how we view the interior of Mars itself.

Continue reading “A Recent Impact on Mars Shook the Planet to Its Mantle”