Titan’s Thick Clouds Obscure our View, but Cassini Took these Images in Infrared, Showing the Moon’s Surface Features

A global mosaic of the surface of Titan, thanks to the infrared eyes of the Cassini spacecraft. Image Credit: NASA/JPL-Caltech/University of Nantes/University of Arizona

Saturn’s moon Titan is a very strange place. It’s surrounded by a dense, opaque atmosphere, the only moon in the solar system with an atmosphere to speak of. It has lakes of liquid methane on its surface, maybe some cryovolcanoes, and some scientists speculate that it could support a form of life. Very weird life.

But we still don’t know a lot about it, because we haven’t really seen much of the surface. Until now.

Continue reading “Titan’s Thick Clouds Obscure our View, but Cassini Took these Images in Infrared, Showing the Moon’s Surface Features”

A New Technique to Figure Out How Old Stars Are

Embry-Riddle researchers used data captured by the Gaia satellite (shown here in an artist’s impression) to determine the ages of stars. Credit: European Space Agency – D. Ducros, 2013

Our understanding of the universe, and of the Milky Way, is built on an edifice of individual pieces of knowledge, all related to each other. But each of those pieces is only so accurate. The more accurate we can make one of the pieces of knowledge, the more accurate our understanding of the whole thing is.

The age of stars is one such piece. For years, astronomers have used a method of determining the age of stars that has a 10% to 20% margin of error. Now, a team of scientists from Embry-Riddle Aeronautical University has developed a new technique to determine the age of stars with a margin of error of only 3% to 5%.

Continue reading “A New Technique to Figure Out How Old Stars Are”

Bizarre Double Star System Flipped its Planetary Disk on its Side

Astronomers theorize that when our Sun was still young, it was surrounded by a disc of dust and gas from which the planets eventually formed. It is further theorized that the majority of stars in our Universe are initially surrounded in this way by a “protoplanetary disk“, and that in roughly 30% of cases, these disks will go on to become a planet or system of planets.

Ordinarily, these disks are thought to orbit around the equatorial band (aka. the ecliptic) of a star or system of stars. However, new research conducted by an international group of scientists has discovered the first example of a binary star system where the orientation was flipped and the disk now orbits the stars around their poles (perpendicular to the ecliptic).

Continue reading “Bizarre Double Star System Flipped its Planetary Disk on its Side”

Incredible Descent Video of the Chinese Lander to the Lunar Far Side

China's Chang'e-4 lander on the lunar surface. Image Credit: CNSA/CLEP

On January 2nd, 2019, China’s Chang’e-4 lander made a successful landing on the far side of the Moon. The China National Space Administration (CNSA) and the Chinese Lunar Exploration Program (CLEP) report that after 9 days on the surface, the mission is in good shape. The Yutu-2 rover has been deployed and has begun exploring the Von Karman crater.

CNSA has released some video of the mission, including a video of Chang’e-4’s historic descent. Thanks to the hard-working people at the Planetary Society, and to Andrew Jones who reports on the Chinese Space Program, we have a handful of new videos and images of the Chang’e-4’s mission to enjoy.

Continue reading “Incredible Descent Video of the Chinese Lander to the Lunar Far Side”

Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life

In recent years, the number of extra-solar planets discovered around nearby M-type (red dwarf stars) has grown considerably. In many cases, these confirmed planets have been “Earth-like“, meaning that they are terrestrial (aka. rocky) and comparable in size to Earth. These finds have been especially exciting since red dwarf stars are the most common in the Universe – accounting for 85% of stars in the Milky Way alone.

Unfortunately, numerous studies have been conducted of late that indicate that these planets may not have the necessary conditions to support life. The latest comes from Harvard University, where postdoctoral researcher Manasvi Lingam and Professor Abraham Loeb demonstrate that planets around M-type stars may not get enough radiation from their stars for photosynthesis to occur.

Continue reading “Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life”

Messier 76 – the NGC 650/651 Planetary Nebula

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the “little dumbbell” itself, the planetary nebula known as Messier 76!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the Messier 76 (aka. the Little Dumbbell Nebula, the Barbell Nebula, or the Cork Nebula) a planetary nebula located about 2,500 light years away in the Perseus Constellation. While it is easy to find because of its proximity to the Cassiopeia Constellation (located just south of it), the faintness of this nebula makes it one of the more difficult Messier Objects to observe. Continue reading “Messier 76 – the NGC 650/651 Planetary Nebula”

Astronomers See the Exact Moment a Supernova Turned into a Black Hole (or Neutron Star)

A look at The Cow (approximately 80 days after explosion) from the W.M. Keck Observatory in Maunakea, Hawaii. The Cow is nestled in the CGCG 137-068 galaxy, 200 million light years from Earth. Image Credit:Raffaella Margutti/Northwestern University

On June 17th 2018, the ATLAS (Asteroid Terrestrial-impact Last Alert System) survey’s twin telescopes spotted something extraordinarily bright in the sky. The source was 200 million light years away in the constellation Hercules. The object was given the name AT2018cow or “The Cow.” The Cow flared up quickly, and then just as quickly it was gone.

What was it?

Continue reading “Astronomers See the Exact Moment a Supernova Turned into a Black Hole (or Neutron Star)”

Neutrino Telescopes Look Deep in the Earth and Deep into Space

IceCube generation 2 is a project to build a ten cubic kilometer neutrino telescope at the South Pole. A one cubic kilometer detector, called IceCube was completed in 2010. Neutrino telescopes are another kind of telescope to go alongside telescopes for visible light, x-rays, infrared, ultraviolet, microwave, radio, gamma ray and gravity waves.

Continue reading “Neutrino Telescopes Look Deep in the Earth and Deep into Space”

Giant Streak Structure Found in Venus’ Cloudtops

A team of researchers in Japan has discovered a gigantic streak structure in the cloud tops of Venus. The discovery is based on observations of Venus by the Japanese spacecraft Akatsuki. The findings were published in January 9th in the journal Nature Communications.

Venus is unlike any other planet in the Solar System. The entire planet is shrouded in thick clouds of sulfuric acid between altitudes of 45 km to 70 km. This thick shroud has prevented scientists from studying Earth’s so-called “sister planet” in detail. But Japanese researchers are making progress.

Continue reading “Giant Streak Structure Found in Venus’ Cloudtops”

In the far Future our Sun will Turn Into a Solid Crystalline White Dwarf. Here’s How it’ll Happen

About fifty years ago, astronomers predicted what the ultimate fate of our Sun will be. According to the theory, the Sun will exhaust its hydrogen fuel billions of years from now and expand to become a Red Giant, followed by it shedding it’s outer layers and becoming a white dwarf. After a few more billion years of cooling, the interior will crystallize and become solid.

Until recently, astronomers had little evidence to back up this theory. But thanks to the ESA’s Gaia Observatory, astronomers are now able to observe hundreds of thousands of white dwarf stars with immense precision – gauging their distance, brightness and color. This in turn has allowed them to study what the future holds for our Sun when it is no longer the warm, yellow star that we know and love today.

Continue reading “In the far Future our Sun will Turn Into a Solid Crystalline White Dwarf. Here’s How it’ll Happen”