How the Hubble Unlocked the Universe

As engineers and technicians work diligently to diagnose and develop a solution (at best) or work around (at worst) the recent gyroscope issues in the Hubble Space Telescope, it gives us a moment to check in and reflect on some of its greatest feats of science. Don’t worry, that great observatory in the sky isn’t going anywhere anytime soon (as much as we would like an upgrade or replacement), so we can confidently look forward to many more years of astronomical greatness. But the Hubble has been running for almost three decades now; what has it contributed to the sum total of human knowledge of the universe?

Continue reading “How the Hubble Unlocked the Universe”

A Red Dwarf Blasts off a Superflare. Any Life on its Planets Would Have a Very Bad Day

The violent outbursts from red dwarf stars, particularly young ones, may make planets in their so-called habitable zone uninhabitable. Image Credit: Credit: NASA, ESA, and D. Player (STScI)

The most common type of star in the galaxy is the red dwarf star. None of these small, dim stars can be seen from Earth with the naked eye, but they can emit flares far more powerful than anything our Sun emits. Two astronomers using the Hubble space telescope saw a red dwarf star give off a powerful type of flare called a superflare. That’s bad news for any planets in these stars’ so-called habitable zones.

Red dwarfs make up about 75% of the stars in the Milky Way, so they probably host many exoplanets. In fact, scientists think most of the planets that are in habitable zones are orbiting red dwarfs. But the more astronomers observe these stars, the more they’re becoming aware of just how chaotic and energetic it can be in their neighbourhoods. That means we might have to re-think what habitable zone means.

“When I realized the sheer amount of light the superflare emitted, I sat looking at my computer screen for quite some time just thinking, ‘Whoa.'” – Parke Loyd, Arizona State University.

Continue reading “A Red Dwarf Blasts off a Superflare. Any Life on its Planets Would Have a Very Bad Day”

How Mission Delays Hurt Young Astronomers

Back in Ye Olden Times, the job of astronomer was a pretty exclusive club. Either you needed to be so rich and so bored that you could design, build, and operate your own private observatory, or you needed to have a rich and bored friend who could finance your cosmic curiosity for you. By contrast, today’s modern observatories are much more democratic, offering of a wealth of juicy scientific info for researchers across the globe. But that ease of access comes with its own price: you don’t get the instrument all to yourself, and that’s a challenge for young scientists and their research.

Continue reading “How Mission Delays Hurt Young Astronomers”

A Star Exploded as a Supernova and Then Collapsed Into a Neutron Star. But Only a Fraction of its Matter was Released

For almost a century, astronomers have been studying supernovae with great interest. These miraculous events are what take place when a star enters the final phase of its lifespan and collapses, or is stripped by a companion star of its outer layers to the point where it undergoes core collapse. In both cases, this event usually leads to a massive release of material a few times the mass of our Sun.

However, an international team of scientists recently witnessed a supernova that was a surprisingly faint and brief. Their observations indicate that the supernova was caused by an unseen companion, likely a neutron star that stripped its companion of material, causing it to collapse and go supernova. This is therefore the first time that scientists have witnessed the birth of a compact neutron star binary system.

Continue reading “A Star Exploded as a Supernova and Then Collapsed Into a Neutron Star. But Only a Fraction of its Matter was Released”

Review: The Most Unknown

The Most unknown

What are the big questions in modern science? All too often, the public perception of science seems to be that we know all that there is to know, and the modern game in science is to simply fill in the gaps in our knowledge.

Nothing could be further from the truth. We recently came across a fascinating documentary that not only looks at some of the big questions today in multi-interdisciplinary science, but has scientists ask and interview other scientists.

We’re talking about The Most Unknown, directed by Peabody-award winning filmmaker Ian Cheney (director of The City Dark and The Search for General Tso) and advised by filmmaker Werner Herzog (known for The Wrath of God and Grizzly Man). The film takes nine scientists for diverse disciplines such as biology and astronomy and catches them all pushing the boundaries of their respective fields into the unknown. What emerges is a fascinating look at the state of modern science, and a glimpse at where things are headed.

The Most Unknown was made possible by the Simons Foundation Science Sandbox. The story literally “begins under a mountain, and ends on a monkey island.” The documentary describes itself as an experiment, as it follows each researcher and expert in their respective field, and follows them as they meet and interview the next scientist. This is science at its collaborative best, a look at how seemingly disparate branches and fields are interlinked.

What I really like about the documentary is how it shows science and scientists outside of laboratory and plying their trade in the field, a far cry from the average perspective the public has of modern scientists.

The Most Unknown is available on Netflix. The film features:

Geomicrobiologist Jennifer Macalady – A Penn State professor looking at extremophile life on Earth to get a glimpse at how life might evolve on other worlds;

Particle physicist Davide D’Angelo – A CERN physicist on the hunt for elusive dark matter;

Cognitive scientist Axel Cleeremans – From the Universite Libre de Bruxelles in Belgium working to understand the nature of consciousness and what it means to be human;

Evolutionary biologist Luke Mckay: Looking at early life in extreme environments here on Earth in an effort to understand how life could evolve on other worlds;

Astronomer Rachel Smith of the Appalachian State University and the North Carolina Museum of Natural Sciences in Raleigh, North Carolina, an astronomer studying the formation of the early solar system and the chemistry of protoplanetary nebulae;

Biologist Erik Cordes- Temple University taking the Alvin to the depths of the sea, an environment that may be similar to Jupiter’s icy moon Europa;

Geobiologist Victoria Orphan – California Institute of Technology, as they take the Atlantis survey submarine down to survey the ocean depths;

Physicist Jun Ye (JILA and the National Institute of Standards and Technology (NIST) a researcher interested in relativity and time;

Cognitive and computational neuroscientist Anil Seth- University of Sussex, looking for the biological basis of consciousness.

Professor of psychology and cognitive science Laurie R. Santos: as she journeys to the ‘monkey island’ of Cayo Santiago off the coast of Puerto Rico to study primate behavior.

The Most Unknown includes such far flung locales as a particle accelerator buried under the Italian Alps, the windswept Keck observatory in Hawaii, and the deep sea. The film also credits, among other things, “the yeti crabs, proto-stellar clouds of dust & gas, neurons and dark matter particles who made this film possible.”

In an era of UFO and Bigfoot documentaries on cable TV masquerading as science, The Most Unknown is a refreshing and true science documentary. Let’s hope Netflix continues the trend, and other online outlets for original content (are you listening, Amazon and Hulu?) follow suit!

Australian astronomers have been able to double the number of mysterious fast radio bursts discovered so far

Fast Radio Bursts (FRBs) have become a major focus of research in the past decade. In radio astronomy, this phenomenon refers to transient radio pulses coming from distant cosmological sources, which typically last only a few milliseconds on average. Since the first event was detected in 2007 (the “Lorimer Burst”), thirty four FRBs have been observed, but scientists are still not sure what causes them.

With theories ranging from exploding stars and black holes to pulsars and magnetars – and even messages coming from extra-terrestrial intelligences (ETIs) – astronomers have been determined to learn more about these strange signals. And thanks to a new study by a team of Australian researchers, who used the Australia Square Kilometer Array Pathfinder (ASKAP), the number of known sources of FRBs has almost doubled.

Continue reading “Australian astronomers have been able to double the number of mysterious fast radio bursts discovered so far”

Surprising Discovery. Four Giant Planets Found Around a Very Young Star

Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system. Image Credit: Amanda Smith, Institute of Astronomy

What exactly is a “normal” solar system? If we thought we had some idea in the past, we definitely don’t now. And a new study led by astronomers at Cambridge University has reinforced this fact. The new study found four gas giant planets, similar to our own Jupiter and Saturn, orbiting a very young star called CI Tau. And one of the planets has an extreme orbit that takes it more than a thousand times more distant from the star than the innermost planet.

Continue reading “Surprising Discovery. Four Giant Planets Found Around a Very Young Star”

Weekly Space Hangout: Oct 17, 2018 – Paul Geithner, Deputy Project Manager, JWST

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Paul Geithner, Deputy Project Manager – Technical for the James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center where he focuses on technical oversight, and the resolution and verification of technical issues. Paul last visited us on October 7, 2017, almost two years ago to the day, and tonight joins us to give us an update about JWST.

You can learn more about Paul by visiting https://jwst.nasa.gov/meet-geithner.html

Announcements:

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you’d like to join Dr. Paul Sutter and Dr. Pamela Gay on their Cosmic Stories in the SouthWest Tour in August 2019, you can find the information at astrotours.co/southwest.

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

Here’s What the First Images from the Event Horizon Might Look Like

Researchers using the Event Horizon Telescope hope to generate images like this of Sag. A's event horizon. Image Credit: EHT.

The largest object in our night sky—by far!—is invisible to us. The object is the Super-Massive Black Hole (SMBH) at the center of our Milky Way galaxy, called Sagittarius A. But soon we may have an image of Sagittarius A’s event horizon. And that image may pose a challenge to Einstein’s Theory of General Relativity.

Continue reading “Here’s What the First Images from the Event Horizon Might Look Like”

You’ve Got to Watch this Stunning NASA Video of Arctic Sea Ice. Now at its Lowest Levels

Arctic sea ice. Image: NASA

Arctic sea ice is getting thinner and younger. Satellite data and sonar records from submarines show how the ice coverage in the north is getting more and more seasonal. In the past, ice would build up year over year, getting thicker and stronger. But seasonal ice disappears each summer, meaning more open ocean in the summer, and less of the Sun’s energy being reflected back into space.

Continue reading “You’ve Got to Watch this Stunning NASA Video of Arctic Sea Ice. Now at its Lowest Levels”