The Helix Nebula is one of the closest and brightest planetary nebula. It's what's left of a dying star and has nothing to do with planets. Our Sun will end up as one of these sumptuous displays, and a new JWST image reveals even more detail in the stunning nebula.
Continue reading
Some really unique science can be done during a total solar eclipse. Totality is the one time we can see the elusive corona of the Sun, the pearly white segment of our host star’s lower atmosphere where space weather activity originates. The trouble is, totality is fleeting. What researchers really need are eclipses on demand. ESA’s innovative Proba-3 mission does just that, by making use of a free-flying occulting disk. Launched in late 2024, we’re now seeing some unique science and images from the space observatory.
Continue reading
If humans are ever going to expand into space itself, it will have to be for a reason. Optimists think that reason is simply due to our love of exploration itself. But in history, it is more often a profit motive that has led humans to seek out new lands. So, it stands to reason that, in order for us to truly begin space colonization, we will have to have a business-related reason to do so. A new paper from the lab of Srivatsan Raman at the University of Wisconsin-Madison and recently published in PLOS Biology, describes one potential such business case - genetically modifying bacteriophages to attack antibiotic resistant bacteria.
Continue reading
High-precision oxygen isotopes in Apollo lunar soils reveal a persistent impactor fingerprint, showing that impacts contributed only a tiny fraction of Earth’s water.
Continue reading
The Hubble Mission Team has released another image of the space telescope's study of star formation. This image shows the dark cloud Lupus 3, a star-forming region about 500 light-years away. Lupus 3 contains bright young T-Tauri stars, and 2 hot young stars that are creating a beautiful nebula.
Continue reading
The resolution of the Event Horizon Telescope is limited by the diameter of Earth, and our observations of the black hole in M87 and in our own galaxy are at the edge of that limit. To observe other, more distant black holes we will need radio telescopes on the Moon.
Continue reading
Back in 2014, the Atacama Large Millimeter/submillimeter Array (ALMA) captured an image of a young protoplanetary disk around a young star named HL Tauri. The image showed gaps and rings in the disk, substructures indicating that young planets forming there. This meant that planet formation began around young stars a lot sooner than thought. ALMA is continuing its investigation of protoplanetary disks in its ARKS survey (ALMA survey to Resolve exoKuiper belt Substructures).
Continue reading
Material science plays an absolutely critical role in space exploration. So when a new type of self-healing composite is announced, it’s worth a look–especially when the press release specifically calls out its ability to repair microtears associated with micrometeoroid impacts on satellites. It sounds like just such a composite material was recently invented at North Carolina State University - and it’s even already been spun out into a start-up company.
Continue reading
How can scientists estimate the pH level of Enceladus’ subsurface ocean without landing on its surface? This is what a recently submitted study hopes to address as a team of scientists from Japan investigated new methods for sampling the plumes of Enceladus and provide more accurate measurements of its pH levels. This study has the potential to help scientists better understand the subsurface ocean conditions on Enceladus and whether it’s suitable for life as we know it.
Continue reading
Newly developing stars shrouded in thick dust get their first baby pictures in these images from NASA’s Hubble Space Telescope. Hubble took these infant star snapshots in an effort to learn how massive stars form. Protostars are shrouded in thick dust that blocks light, but Hubble can detect the near-infrared emission that shines through holes carved in the gas by the young stars themselves.
Continue reading
The Ring Nebula is a well-studied planetary nebula about 2,570 light-years away. Nnew observations of the nebula with a new instrument have revealed a previously unseen component. The William Herschel Telescope used its WEAVE instrument to detect a massive 'iron bar' inside the nebula's inner layer.
Continue reading
The US’s federally funded space program has been struggling of late. With the recent cancellation of the Mars Sample Return mission, and mass layoffs / resignations taking place at NASA, the general sense of a lack of morale at the agency is palpable, even from a distance. Jared Isaacman, the billionaire software entrepreneur and rocket enthusiast who was recently confirmed as NASA administrator during his second confirmation hearing, hopes to change that, and one of his priorities is pushing the Artemis missions for a permanent human presence on the Moon. However, at least one big technical hurdle remains before being able to do so - how to power a base during the two week long lunar night. A recent press release describes how NASA, and another branch of the federal government (the Department of Energy - DoE) hope to solve that problem - with a lunar-ready nuclear fission reactor
Continue reading
We recently discussed the different types of worlds that the Habitable Worlds Observatory (HWO) is expected to find that might have noticeable biosignatures. However, no matter how good the instrumentation on board the observatory is, the data it collects will be useless if scientists don’t know how to interpret it. A paper explaining what data they need to collect before analyzing HWO data was authored by Niki Parenteau, a research biologist at NASA, and her co-authors, which is now available in pre-print on arXiv.
Continue reading
Astronomers at the University of Warwick have discovered that black holes don’t just consume matter—they manage it, choosing whether to blast it into space as high-speed jets or sweep it away in vast winds.
Continue reading
Hydrogen Cyanide, which is toxic, may have played an important role in the emergence of life. Its unique properties, especially in frigid environments in space, may have helped generate the complex molecules necessary for life to appear.
Continue reading
Humans have always been fascinated with space. We frequently question whether we are alone in the universe. If not, what does intelligent life look like? And how would aliens communicate?
Continue reading
Deep beneath the surface of distant exoplanets known as super-Earths, oceans of molten rock may be doing something extraordinary: powering magnetic fields strong enough to shield entire planets from dangerous cosmic radiation and other harmful high-energy particles.
Continue reading
The early stage of giant telescope development involves a lot of horse-trading to try to appease all the different stakeholders that are hoping to get what they want out of the project, but also to try to appease the financial managers that want to minimize its cost. Typically this horse-trading takes the form of a series of white papers that describe what would be needed to meet the stated objectives of the mission and suggest the type of instrumentation and systems that would be needed to achieve them. One such white paper was recently released by the Living Worlds Working Group, which is tasked with speccing out the Habitable Worlds Observatory (HWO), one of the world’s premiere exoplanet hunting telescopes that is currently in the early development stage. Their argument in the paper, which is available in pre-print on arXiv, shows that, in order to meet the objectives laid out in the recent Decadal survey that called for the telescope, it must have extremely high signal-to-noise ratio, but also be able to capture a very wide spectrum of light.
Continue reading
Inside the cores of ice giant planets, the pressure and temperature are so extreme that the water residing there transitions into a phase completely unfamiliar under the normal conditions of Earth. Known as “superionic water”, this form of water is a type of ice. However, unlike regular ice it’s actually hot, and also black. For decades, scientists thought that the superionic water in the core of Neptune and Uranus is responsible for the wild, unaligned magnetic fields that the Voyager 2 spacecraft saw when passing them. A series of experiments described in a paper published in Nature Communications by Leon Andriambariarijaona and his co-authors at the SLAC National Accelerator Laboratory and the Sorbonne provides experimental evidence of why exactly the ice causes these weird magnetic fields - because it is far messier than anyone expected.
Continue reading
A new census of more than 8,000 galaxies finds active black holes rising in frequency with galaxy mass, jumping sharply in galaxies similar in mass to the Milky Way.
Continue reading
Our nearest neighbor, the Moon, is still something of a mystery to us. For decades, scientists have wondered why it appears so lopsided, with dark volcanic plains on the near side (the side we see) and rugged, cratered mountains and a thicker crust on the far side. Now we might be closer to knowing why.
Continue reading
Physicists at the University of Oxford have contributed to a new study which has found that iron-rich asteroids can tolerate far more energy than previously thought without breaking apart - a breakthrough with direct implications for planetary defence strategies.
Continue reading
This collection of new images taken by NASA’s Hubble Space Telescope showcases protoplanetary disks, the swirling masses of gas and dust that surround forming stars, in both visible and infrared wavelengths. Through observations of young stellar objects like these, Hubble helps scientists better understand how stars form. These visible-light images depict dark, planet-forming dust disks […]
Continue reading
Chemistry on other worlds varies widely from that on Earth. Much of Earth’s chemistry is driven by well-understood processes, which typically involve water and heat in some form. Mars lacks both of those features, which makes how some of its chemicals formed a point of ongoing debate in the scientific community. A new paper led by Alian Wang and Neil Sturchio of Washington University of St. Louis and the University of Delaware, respectively, and published recently in Earth and Planetary Science Letters offers a new framework for understanding chemical reaction processes on Mars. Despite the differences, Earthlings will still be familiar with the driving force behind Martian chemistry - electricity.
Continue reading
Young protostars populate the cloudy regions in the Orion Molecular Cloud complex in these images from the Hubble Space Telescope. Three of the telescope's new images are part of a scientific effort to understand the gaseous, dusty envelopes around protostars. Scientists know that these young stars have powerful stellar winds and jets that carve caverns and bubbles out of the surrounding gas, but they have unanswered questions about that process.
Continue reading
Additive Manufacturing, more commonly known as 3D printing, will be an absolutely critical technology for any long-term settlement on another world. Its ability to take a generic input, such as plastic strips or metal powder, and turn it into any shape of tool an astronaut will need is an absolute game changer. But the chemistry behind these technologies is complicated, and their applications are extremely varied, ranging from creating bricks for settlements to plastics for everything from cups to toothbrush holders. A new paper available in pre-print on arXiv from Zane Mebruer and Wan Shou of the University of Arkansas, explores one specific aspect of a particularly important type of 3D printing, and realized that they could save millions of dollars on Mars missions by simply using the planet’s atmosphere to help print metal parts.
Continue reading
As NASA moves closer to launch of the Artemis II test flight, the agency soon will roll its SLS (Space Launch System) rocket and Orion spacecraft to the launch pad for the first time at the agency’s Kennedy Space Center in Florida to begin final integration, testing, and launch rehearsals. NASA is targeting no earlier.
Continue reading
New research shows that complex life is unlikely to ever exist around cool, dim red dwarfs. About 33% of the Milky Way's stars are late M dwarfs, which are the smallest, coolest stars, and are the easiest stars to detect Earth-like planets around. The stars aren't bright enough for photosynthetic organisms to create a Great Oxygenation Event, which led to complex animal life here on Earth.
Continue reading
Researchers used the JWST to find a pair of strong gravitationally lensed Supernovae. They exploded billions of years ago, and their light is just reaching us now. Because of the lensing, we'll see multiple images of them, separated by years or decades. This could reveal the expansion rate of the Universe, and provide a solution to the Hubble Tension.
Continue reading
Back in the earlier days of the internet, there was a viral video from a creator called Bill Wurtz called “the history of the entire world, i guess” which spawned a number of memorable memes, some of which are still in use to this day. One of those was a clip from the video where Wurtz states “The Sun is a deadly laser.” Apparently, that was more true than even he knew, as a new paper from Georgios Tsirvouils of the Luleå University of Technology in Sweden and his co-authors have shown experimental evidence that the Sun’s laser-like radiation is likely responsible for the death of a vast majority of closely-orbiting asteroids.
Continue reading
Scientists have finally identified where some of the most powerful radiation bursts from solar flares originate, solving a mystery that has puzzled solar physicists for decades. Researchers at the New Jersey Institute of Technology traced intense gamma rays back to a previously unknown population of particles supercharged to millions of electron volts in the Sun’s atmosphere, revealing the mechanism behind these strange signals.
Continue reading
Every second, a trillion ghost particles stream through your body unnoticed, invisible messengers carrying secrets from the hearts of distant stars. Astrophysicists at the University of Copenhagen have now mapped exactly where these neutrinos originate across our Milky Way Galaxy and how many reach Earth, creating the most comprehensive picture yet of these elusive particles.
Continue reading
How solid is our understanding of exoplanet habitability? Are the ideas of an Optimistic Habitable Zone and a Conservative Habitable Zone sufficient to advance our understanding? New research introduces an expanded exoplanet 'temperate zone,' highlighting planets that are amenable to atmospheric study by the JWST.
Continue reading
Brief, brilliant flashes of blue light occasionally appear across the universe, burning hundreds of times brighter than ordinary supernovae before fading within days. Astronomers have puzzled over these luminous fast blue optical transients for years, unable to determine whether they were unusual stellar explosions or something else entirely. Observations of AT 2024wpp, the brightest example ever detected, have finally solved the mystery.
Continue reading
Two towering buildings that helped launch humanity's greatest space achievements came down on January 10 at NASA's Marshall Space Flight Centre in Alabama. The Dynamic Test Stand and the T-tower, both designated National Historic Landmarks, played crucial roles in developing the Saturn V rockets that carried Apollo astronauts to the Moon and the Space Shuttle that defined an era of spaceflight. Their carefully orchestrated demolition marks a transformation, as NASA clears the way for a modernised infrastructure ready to support the next generation of space exploration.
Continue reading
For decades, astronomers believed that the most massive stars in the universe lived fast and died quietly, collapsing directly into black holes without the spectacular fireworks of a supernova explosion. That understanding has been dramatically overturned by observations of SN 2022esa, a peculiar supernova that erupted from an incomprehensibly massive star and is now destined to become a black hole binary system.
Continue reading
There is a fundamental tension in space exploration that has created ongoing debates for decades. By creating the infrastructure we need to explore other worlds, we damage them in some way, making them either less scientifically interesting or less “pristine,” which some would argue, in itself, is a bad thing. A new paper available in JGR Planets, from Francisca Paiva, a physicist at Instituto Superior Técnico, and Silvio Sinibaldi, the European Space Agency’s (ESA’s) planetary protection officer, argues that, in the Moon’s case at least, the problem is even worse than we originally thought.
Continue reading
What exists beneath the surface of Jupiter’s icy moon, Callisto? This is what a recent study accepted by The Planetary Science Journal hopes to address as a team of researchers investigated the subsurface composition of Callisto, which is Jupiter’s outermost Galilean satellite. This study has the potential to help scientists better understand the interior composition of Callisto, which is hypothesized to possess a subsurface liquid water ocean, and develop new techniques for exploring planetary subsurface environments.
Continue reading
In a historic first, an unspecified medical issue is prompting an early return from the International Space Station on Wednesday night, January 14th. And while the return will be featured live online from undocking to splashdown, if skies are clear, you might just be able to see the pair crossing the night sky tonight, shortly after undocking.
Continue reading
Astronomers using ALMA have detected the earliest hot galaxy cluster atmosphere ever observed, revealing a massive reservoir of superheated gas in the infant cluster SPT2349-56 just 1.4 billion years after the Big Bang. The gas is far hotter and more pressurised than current theories predicted for such a young system, forcing scientists to completely rethink how galaxy clusters evolved in the early universe. This discovery suggests that violent processes like supermassive black hole outbursts and intense starbursts heated these cluster atmospheres much earlier and more efficiently than anyone expected, fundamentally challenging our understanding of how the universe’s largest structures formed.
Continue reading
Astronomers using the James Webb Space Telescope and ALMA have discovered one of the oldest ‘dead’ galaxies in the universe, revealing that supermassive black holes can kill galaxies through slow starvation rather than violent destruction. The galaxy, nicknamed ‘Pablo’s Galaxy’, formed most of its 200 billion solar masses of stars between 12.5 and 11.5 billion years ago before abruptly stopping, not because its black hole blew away all the gas in one catastrophic event, but because it repeatedly heated incoming material over multiple cycles, preventing fresh fuel from ever replenishing the galaxy’s star forming reserves.
Continue reading
NASA’s Hubble Space Telescope has captured stunning new image of HH 80/81, a pair of objects created when supersonic jets from a newborn star slam into previously expelled gas clouds, heating them to extreme levels. These jets, powered by a protostar 20 times more massive than our Sun, stretch over 32 light years through space and travel at speeds exceeding 1,000 kilometres per second, making them the fastest outflows ever recorded from a young star.
Continue reading
A disparate collection of young stellar objects bejewels a cosmic panorama in the star-forming region NGC 1333 in this new image from NASA’s Hubble Space Telescope. To the left, an actively forming star called a protostar casts its glow on the surrounding gas and dust, creating a reflection nebula. Two dark stripes on opposite sides […]
Continue reading
Betelgeuse is the star that everybody can't wait to see blow up, preferably sooner than later. That's because it's a red supergiant on the verge of becoming a supernova and there hasn't been one explode this close in recorded human history. It's been changing its brightness and showing strange surface behavior, which is why astronomers track its activity closely. Are these changes due to its aging process? Do they mean it's about to blow up? Probably not.
Continue reading
Mars Was Half Covered by an Ocean
susannakohler33808
Mon, 01/12/2026 - 12:00
Mars Was Half Covered by an Ocean
https://mediarelations.unibe.ch/media_releases/2026/media_releases_2026/mars_was_half_covered_by_an_ocean/index_eng.html
Continue reading
New Space is a term now commonly used around the rocketry and satellite industries to indicate a new, speed focused model of development that takes its cue from the Silicon Valley mindset of “move fast and (hopefully don’t) break things.” Given that several of the founders of rocketry and satellite companies have a Silicon Valley background, that probably shouldn’t be a surprise, but the mindset has resulted in an exponential growth in the number of satellites in orbit, and also an exponential decrease in the cost of getting them to orbit. A new paper, recently published in pre-print form in arXiv from researchers at Schmidt Sciences and a variety of research institutes, lays out plans for the Lazuli Space Observatory, which hopes to apply that same mindset to flagship-level space observatory missions.
Continue reading
Mars Express has captured stunning images of wind sculpted terrain near the planet’s equator, revealing how Martian winds act as a sandblaster across geological timescales. The spacecraft’s high resolution camera spotted amazing ridges called yardangs, features carved by sand carrying winds that extend tens of kilometres across the surface. These dramatic erosional features share the landscape with impact craters and ancient lava flows, creating a fusion of three different geological forces that together tell the story of Mars’s violent and dynamic past.
Continue reading
Astronomers have revealed a surprising diversity in the evolutionary paths of the universe’s most massive galaxies. Using multi-wavelength observations combining Keck Observatory spectroscopy with far infrared and radio data, researchers found that less than two billion years after the Big Bang, some ultramassive galaxies had already shut down star formation and shed their dust, while others continued building stars behind thick dusty veils.
Continue reading
Astronomers have discovered a crucial missing link in understanding how the Galaxy’s most common planets form. By studying four young, extraordinarily puffy planets orbiting a 20 million year old star, researchers have captured a rare snapshot of worlds actively transforming into super Earths and sub Neptunes. This discovery reveals that the universe’s most successful planets start as bloated giants before shrinking dramatically over billions of years, fundamentally changing our understanding of how planetary systems evolve.
Continue reading
Like I said at the beginning, I’m not really keen on the idea of the mathematical universe. My own personal biggest objection stems from the whole point of occam’s razor: make things as simple as possible.
Continue reading