Rosetta Moving Closer to Comet 67P Hunting for Philae Landing Site

Animation Caption: Possible landing sites on Comet 67P/Churyumov-Gerasimenko. The model shows the illumination of the comets surface and regions under landing site consideration for the Philae lander on board ESA’s Rosetta spececraft . Credit: CNES

“The race is on” to find a safe and scientifically interesting landing site for the Philae lander piggybacked on ESA’s Rosetta spacecraft as it swoops in ever closer to the heavily cratered Comet 67P/Churyumov-Gerasimenko since arriving two weeks ago after a decade long chase of 6.4 billion kilometers (4 Billion miles).

Rosetta made history by becoming the first ever probe from Earth to orbit a comet upon arrival on Aug. 6, 2014.

The probe discovered an utterly alien and bizarre icy wanderer that science team member Mark McCaughrean, of ESA’s Science Directorate, delightedly calls a ‘Scientific Disneyland.’

“It’s just astonishing,” he said during a live ESA webcast of the Aug. 6 arrival event.

Now, another audacious and history making event is on tap – Landing on the comet!

To enable a safe landing, Rosetta is moving in closer to the comet to gather higher resolution imaging and spectroscopic data. When Rosetta arrived on Aug. 6, it was initially orbiting at a distance of about 100 km (62 miles). As of today, carefully timed thruster firings have brought it to within about 80 km distance. And it will get far closer.

Right now a top priority task for the science and engineering team leading Rosetta is “Finding a landing strip” for the Philae comet lander.

Philae’s landing on comet 67P is currently scheduled for Nov. 11, 2014. The 100 kg lander is equipped with 10 science instruments

“The challenge ahead is to map the surface and find a landing strip,” said Andrea Accomazzo, ESA Rosetta Spacecraft Operations Manager, at the Aug. 6 ESA webcast.

The team responsibility for choosing the candidate sites comprises “the Landing Site Selection Group (LSSG), which comprises engineers and scientists from Philae’s Science, Operations and Navigation Centre (SONC) at CNES, the Lander Control Centre (LCC) at DLR, scientists representing the Philae Lander instruments, and supported by the ESA Rosetta team, which includes representatives from science, operations and flight dynamics,” according to an ESA statement.

This week the team is intensively combing through a preliminary list of 10 potential landing sites.

Over the weekend they will whittle the list down to five candidate landing sites for continued detailed analysis.

ESA will announce the Top 5 landing site candidates on Monday, Aug. 25.

Where will Philae land?
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet’s nucleus. It was taken by the Rosetta spacecraft’s OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer

The decision rests on the results of Rosetta’s ongoing global mapping campaign, including high resolution imaging from the OSIRIS and NAVCAM cameras and further observations from the other science instruments, especially MIRO, VIRTIS, ALICE, GIADA and ROSINA.

The surface criteria for a suitable landing site include day time landing illumination, a balance between day and night to allow the solar panels to recharge the batteries, avoiding steep slopes, large boulders and deep crevasses so it doesn’t topple over.

Of course the team also must consider the comet’s rotation period (12.4 hours) and axis of rotation (see animation at top). Sites near the equator offering roughly equal periods of day and night may be preferred.

The selection of the primary landing site is slated for mid-October after consultation between ESA and the lander team on a “Go/No Go” decision.

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Artist impression of Philae on the surface of comet 67P/Churyumov-Gerasimenko. Credit: ESA/ATG medialab

Read an Italian language version of this story by my imaging partner Marco Di Lorenzo – here

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ken Kremer

Dr. Ken Kremer is a speaker, research scientist, freelance science journalist (KSC area,FL) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calendars including Astronomy Picture of the Day, NBC, FOX, BBC,, Spaceflight Now, Science and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral, NASA Wallops, NASA Michoud/Stennis/Langley and on over 80 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - Follow Ken on Facebook and Twitter

Recent Posts

Success and Failure: Relativity Space Launches its Terran 1, but the Rocket Fails to Reach Orbit. However, the Launch Photos are Incredible

This past week was a mixed bag for Relativity Space and their 3D-printed methane-fueled rocket…

2 hours ago

A Rogue Earth and Neptune Might Have Been Found in Older Data

Scientists have found what appear to be rogue planets hidden in old survey data. Their…

21 hours ago

Hypervelocity Stars Teach us About Black Holes and Supernovae

A new study shows how hypervelocity stars could teach us more about the most powerful…

2 days ago

The Discovery of a Hot Neptune that Shouldn’t Exist

1800 light-years away, an unlikely survivor orbits an aged star. This rare planet is called…

2 days ago

Fly Around Jezero Crater on Mars in This New Video

There’s a reason Jezero Crater was chosen as the landing site for the Perseverance Rover:…

2 days ago

Did Supernovae Help Push Life to Become More Diverse?

Life on Earth has been around for a long time—at least 3.8 billion years. During…

3 days ago