What Happens When Supermassive Black Holes Merge?

Frame from a simulation of the merger of two black holes and the resulting emission of gravitational radiation (NASA/C. Henze)

The short answer? You get one super-SUPERmassive black hole. The longer answer?

Well, watch the video below for an idea.

This animation, created with supercomputers at the University of Colorado, Boulder, show for the first time what happens to the magnetized gas clouds that surround supermassive black holes when two of them collide.

The simulation shows the magnetic fields intensifying as they contort and twist turbulently, at one point forming a towering vortex that extends high above the center of the accretion disk.

This funnel-like structure may be partly responsible for the jets that are sometimes seen erupting from actively feeding supermassive black holes.

The simulation was created to study what sort of “flash” might be made by the merging of such incredibly massive objects, so that astronomers hunting for evidence of gravitational waves — a phenomenon first proposed by Einstein in 1916 — will be able to better identify their potential source.

Read: Effects of Einstein’s Elusive Gravity Waves Observed

Gravitational waves are often described as “ripples” in the fabric of space-time, infinitesimal perturbations created by supermassive, rapidly rotating objects like orbiting black holes. Detecting them directly has proven to be a challenge but researchers expect that the technology will be available within several years’ time, and knowing how to spot colliding black holes will be the first step in identifying any gravitational waves that result from the impact.

In fact, it’s the gravitational waves that rob energy from the black holes’ orbits, causing them to spiral into each other in the first place.

“The black holes orbit each other and lose orbital energy by emitting strong gravitational waves, and this causes their orbits to shrink. The black holes spiral toward each other and eventually merge,” said astrophysicist John Baker, a research team member from NASA’s Goddard Space Flight Center. “We need gravitational waves to confirm that a black hole merger has occurred, but if we can understand the electromagnetic signatures from mergers well enough, perhaps we can search for candidate events even before we have a space-based gravitational wave observatory.”

The video below shows the expanding gravitational wave structure that would be expected to result from such a merger:

If ground-based telescopes can pinpoint the radio and x-ray flash created by the mergers, future space telescopes — like ESA’s eLISA/NGO — can then be used to try and detect the waves.

Read more on the NASA Goddard new release here.

First animation credit: NASA’s Goddard Space Flight Center/P. Cowperthwaite, Univ. of Maryland. Second animation: NASA/C. Henze.


Jason Major

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Recent Posts

In 1872, a Solar Storm Hit the Earth Generating Auroras from the Tropics to the Poles

Imagine a solar storm generating auroral displays across the entire sky. No, we haven't quite…

5 hours ago

For its Final Trick, Chandrayaan-3 Brings its Propulsion Module to Earth Orbit

On August 23, ISRO's Vikram lander detached from its propulsion module and made a soft…

8 hours ago

ESA’s Ariel Mission is Approved to Begin Construction

We're about to learn a lot more about exoplanets. The ESA has just approved the…

10 hours ago

Communicating With a Relativistic Spacecraft Gets Pretty Weird

Someday, in the not-too-distant future, humans may send robotic probes to explore nearby star systems.…

12 hours ago

99% of Space Junk is Undetectable. That Could Change Soon

Private and military organizations are tracking some of the 170 million pieces of space junk…

13 hours ago

Astronomers Calculate Which Exoplanets Are Most Likely to Have Water

Astronomers know of about 60 rocky exoplanets orbiting in the habitable zones of their stars.…

14 hours ago