Philae’s Wild Comet Landing: Crater Grazing, Spinning And Landing In Parts Unknown

No, scientists haven’t found Philae yet. But as they churn through the scientific data on the comet lander, more information is emerging about the crazy landing last month that included three touchdowns and an incredible two hours of drifting before Philae came to rest in a relatively shady spot on the surface.

Among the latest: the tumbling spacecraft “collided with a surface feature” shortly after its first landing, perhaps grazing a crater rim with one of its legs. This information comes from an instrument called ROMAP (Rosetta Lander Magnetometer and Plasma Monitor) that monitors magnetic fields. The instrument is now being used to track down the spacecraft.

ROMAP’s usual role is to look at the comet’s magnetic field as it interacts with the solar wind, but the challenge is the orbiter (Rosetta) and lander both create tiny ones of their own due to the magnetic circuitry. Usually this data is removed to see what the comet’s environment is like. But during the landing, ROMAP was used to track Philae’s descent.

Four images of Comet 67P/Churyumov–Gerasimenko taken on Nov. 30, 2014 by the orbiting Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Philae was supposed to fire harpoons to secure itself to the surface when it touched down at 3:34 p.m. UTC (10:34 a.m. EST) Nov. 12, but the mechanism failed. ROMAP’s data then shows the spin rate increasing, with the lander turning at one rotation every 13 seconds.

The grazing collision happened at 4:20 pm. UTC (11:20 a.m. EST), making the rotation decrease to once every 24 seconds. Then the final two touchdowns happened around 5:25 p.m. UTC (12:25 p.m. EST) and 5:31 p.m. UTC (12:31 p.m. EST). Controllers hope they can figure out exactly where Philae arrived once they look at data from ROMAP, CONSERT and other instruments on the lander.

Philae is now hibernating because there isn’t enough sunlight in its landing spot to recharge its battery through the solar panels. Rosetta, meanwhile, continues orbiting 67P and sending back pictures of the comet as it draws closer to the Sun, including the image you see further up in this blog post, released today (Dec. 2) a few days after it was taken in space.

Source: European Space Agency

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

9 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

13 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

13 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

19 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

23 hours ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

1 day ago