A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Atlas V Engine Anomaly Forces Thrust Makeup During Cygnus Launch, Next Flight Delayed

Article Updated: 25 Mar , 2016

by

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – This week’s Atlas V rocket launch of a Cygnus cargo ship to the International Space Station (ISS) apparently experienced a first stage engine anomaly during the climb to space that required a longer firing of the boosters upper stage engine so the payload could successfully achieve the required orbit.

The stunningly beautiful nighttime blastoff of the United Launch Alliance (ULA) Atlas V from the Florida space coast on Tuesday, March 22, was not quite as flawless as initially thought and marred by the early engine shutdown which has now forced a postponement of the next planned Atlas V launch as company engineers painstakingly evaluate the data.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, spokesperson for rocket maker ULA, told Universe Today.

“The ULA engineering team is reviewing the data to determine the root cause of the occurrence.”

The Centaur RL10C-1 powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the Atlas V’s first stage RD-180 engines.

Indeed the Centaur had to fire for a minute longer than planned to inject Cygnus into its target orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit.”

“The team is evaluating the occurrence as part of the standard post-flight data analysis. Following successful spacecraft separation, Centaur performed a disposal burn,” Chessagne elaborated.

The two stage ULA Atlas V lifted off on time at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, under a picturesque moonlit sky carrying an Orbital ATK Cygnus spacecraft on a resupply mission for NASA to the ISS.

Following a 21-minute ascent, the S.S. Rick Husband Cygnus spacecraft was successfully deployed into its intended orbit approximately 144 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital ATK confirmed in a statement.

The Russian-made RD AMROSS RD-180 engines power the Atlas V first stage and the dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit need to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The cause of the first stage engine shortfall has not been announced. ULA has launched a thorough investigation to determine root cause as to whether for example it’s the RD-180 engine itself, a faulty sensor, fuel related, ground support equipment or a myriad of some other rocket components or issues.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

Although the Atlas V did successfully launch and deploy the commercial Cygnus CRS-6/OA-6 spacecraft into the required orbit, the Centaur was pressed into extra duty in real time to propel the payload.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

At the post launch media briefing, ULA program manager for NASA missions Vern Thorp, said that “ in a little over 20 minutes we went from liftoff to delivering Cygnus into exactly the orbit that it wanted to be in. This was our second successful cargo mission [for Orbital ATK] since December.”

“We were targeting a 230 kilometer circular orbit and we came very close to that as we normally do, just a fraction of a kilometer off. Well within the normal dispersions.”
“We nailed it. We got Cygnus where it wants to go.”

Asked about the Centaur he said that the prelaunch predictions are based on preliminary trajectories and can vary depending on the actual conditions at launch.

“What I do know is that Centaur nailed the orbit. Like every mission, we’re going to do a very, very detailed post-flight review. We always do and we always have done that. That’s to make sure that everything performed properly. From everything we’ve seen so far, the mission was pretty nominal.”

Now as a result of the post-flight review into the engine anomaly and velocity shortfall, the next launch of the “Atlas V carrying the MUOS-5 mission for the U.S. Navy and the U.S. Air Force has been delayed to no earlier than May 12,” Chassagne added.

ULA needs to “further review the data anomaly experienced during the OA-6 mission.”

“The delay will allow additional time to review the data and to confirm readiness for the MUOS-5 mission.”

The Atlas V/MUOS-5 mission will lift off from the same pad at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, whenever a launch target date is announced by ULA.

ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

Meanwhile the Cygnus CRS-6/OA-6 spacecraft continues chasing down the ISS for a planned arrival early Saturday morning, March 26.

The spacecraft will arrive at the station on Saturday, March 26. At that time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.

NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The Cygnus CRS-6/OA-6 payload of more than 16,000 pounds (7200 kg) weighed in as the heaviest payload to launch on an Atlas V to date.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com

A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

Watch for Ken’s ongoing Cygnus launch reports.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

, , , , , , , , , , , , , , , , ,



Sort by:   newest | oldest | most voted
Random Sample
Member
Random Sample
March 25, 2016 4:25 PM

I guess that’s what we get for relying on Russian engines. I hope the whole Vulcan project moves forward sooner rather than later.

Zoutsteen
Member
Zoutsteen
March 25, 2016 4:50 PM

sometimes its easy to compare spaceflight advancements with aircraft advancements.

But with over 102.000 flights per day … (or 2m people are flying at any time of day)
the difference in flight frequency should make it obvious why spacecrafts are still having minor issues. It takes years longer to find all the minor flaws fitting that one law of Murphy where “Everything that can go wrong, will go wrong” … eventualy.

BlackWolfStanding
Member
BlackWolfStanding
March 25, 2016 9:24 PM

Ok, who truncated instead of rounding when converting from metric to standard with the fuel amounts? I hate it when running out of fuel just six seconds short of you destination.

(That was a joke people, gosh tough crowd.)

Zoutsteen
Member
Zoutsteen
March 26, 2016 4:52 AM

plenty of silliness around:
– you know how things shrink with cold … cold fuel made it fell short of optimal
– exhausted, it was time to fume: “enough is enough”
– the booster stage prematurely insertulated
– vexed, the last 6 seconds got hexed.
– etc.

Ps8
Member
Ps8
March 26, 2016 10:15 AM

“Following a 21-minute ascent, the S.S. Rick Husband Cygnus spacecraft was successfully deployed into its intended orbit approximately 144 miles above the Earth, …” Really? only 144 miles high? Doesn’t ISS generally orbit earth about 100 miles higher up, at say 240 miles high? Perhaps this lower orbit is what allows spacecraft to “chase down” the ISS, gradually ascending to match its altitude and speed when its position is right; I just never realized that it would start the chase from so much lower …

sangos
Member
sangos
March 27, 2016 12:45 PM

The RD 180 is reliable. Any chance Orbital modded the engine?

Aqua4U
Member
March 27, 2016 11:54 PM

GO Centaur! Quite the legacy there.. baby Atlas sounds right!

wpDiscuz