Next Cygnus Cargo Launch to Space Station Switched to ULA Atlas V

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

In a complete change of plans from less than three weeks ago, NASA has asked Orbital ATK to switch rockets and launch the firms next Cygnus commercial cargo freighter to the space station on the tried and true Atlas V rather than their own Antares rocket – which just successfully delivered another Cygnus to the orbiting outpost with a hefty stash of science and supplies.

The altered schedule “provides margin flexibility for the entire Antares workforce” Orbital ATK noted in a statement to Universe Today.

However, the change of events comes as something of a surprise following the spectacularly successful nighttime blastoff of Antares on Oct. 17 with the Cygnus OA-5 resupply ship from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore – as I reported on from onsite.

At the time, Orbital ATK officials told Universe Today they were working towards efforts for the next Cygnus to launch from Wallops on the OA-7 resupply mission sometime next spring – tentatively in March 2017.

“Following a successful Antares launch for the recent OA-5 Commercial Resupply Services mission and subsequent rendezvous and berthing of the Cygnus spacecraft with the International Space Station, Orbital ATK has responded to NASA’s needs for enhanced schedule assurance for cargo deliveries and maximum capacity of critical supplies to the space station in 2017 by once again partnering with United Launch Alliance to launch Cygnus aboard an Atlas V for the upcoming OA-7 mission in the spring timeframe,” Orbital ATK said in a statement to Universe Today.

“We anticipate the earliest we may need a NASA commercial resupply mission is early 2017. We mutually agreed with Orbital ATK to use an Atlas V for the company’s seventh contracted cargo resupply mission to the space station in the spring. We will provide additional details at a later date,” NASA HQ public affairs told Universe Today for this story.

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The ULA Atlas V would launch from Space Launch Complex-41 on Cape Canaveral Air Force Station.

Cygnus OA-7 will be processed and loaded at NASA’s Kennedy Space Center in Florida for later integration with the Atlas V.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

When Cygnus launches on Atlas from KSC it can carry roughly over 300 pounds more to orbit vs. using Antares from Virginia.

The Cygnus OA-5 spaceship is currently still berthed at the million pound station and carried about 5100 pounds to orbit.

Thus the ISS is in good shape overall at this time from a supplies standpoint.

“Supplies and research investigations are at good levels aboard the International Space Station. In addition to Orbital ATK’s recent successful commercial resupply services mission to station in October, a Russian Progress and Japanese HTV will carry additional cargo to the orbiting laboratory before the end of the year,” NASA public affairs elaborated for this story.

Installation complete! Orbital ATK's Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m.  EDT on 23 Oct. 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA
Installation complete! Orbital ATK’s Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m. EDT on 23 Oct. 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA

Last month’s ‘Return to Flight’ liftoff of the upgraded Antares took place two years after its catastrophic failure moments after launch on October 28, 2014 with another Cygnus cargo ship bound for the International Space Station (ISS) that was destroyed along with all its precious contents.

And that may be the rub, along with the fact that launches by NASA’s other Commercial Resupply Services (CRS) provider – namely SpaceX – are on hold due to the catastrophic launch pad failure on Sept. 1.

Thus it’s not clear at this time when SpaceX can resume launching their Dragon cargo ships to the ISS.

NASA must have a robust and steady train of cargo ships flying to the ISS to keep it fully operational and stocked with research and provisions for the international crews to maximize the stations science output.

“NASA is continuously working with all our partners on range availability, space station traffic and other factors to ensure we operate station in a safe and effective way as we use it for preparing for longer duration missions farther into the solar system,” NASA PAO told me.

The Atlas V built by competitor United Launch Alliance (ULA) enjoys a 100% record of launch success and was recently employed by Orbital ATK to launch a pair of Cygnus vessels to the International Space Station in the past year – in Dec. 2015 on the OA-4 mission and March 2016 on the OA-6 mission.

Orbital ATK contracted ULA to launch Cygnus spacecraft to the ISS as an interim measure to fulfill their obligations to NASA to keep the station fully operational.

Orbital ATK Vice President Frank Culbertson had previously told me that Orbital ATK could readily launch future Cygnus spaceships on the ULA Atlas V again, if the need arose.

Seeking some near term launch stability NASA has apparently decided that that need has now arisen.

Both Atlas/Cygnus cargo missions went off without a hitch and provide a ready and working template for the upcoming OA-7 cargo ship to be processed again at KSC and launched from Cape Canaveral in the spring of 2017.

Orbital ATK says that follow on Cygnus craft will again return to the Antares rocket for Virginia launches later in 2017.

“Orbital ATK’s remaining missions to be conducted in 2017 and 2018 under the CRS-1 contract will launch aboard the company’s Antares rockets from NASA Wallops Flight Facility in Virginia.”

On-Ramp to the International Space Station (ISS) with Orbital ATL Antares rocket and Cygnus cargo freighter which launched on 17 Oct. 2016 and berthed at the Unity docking port on 23 Oct. 2016.    Credit: Ken Kremer/kenkremer
On-Ramp to the International Space Station (ISS) with Orbital ATL Antares rocket and Cygnus cargo freighter which launched on 17 Oct. 2016 and berthed at the Unity docking port on 23 Oct. 2016. Credit: Ken Kremer/kenkremer

Altogether a trio of Cygnus vessels might launch in 2017.

“The company will be ready to support three cargo resupply missions to the station next year, and will work with NASA to finalize the flight schedule,” the company said.

“The schedule provides margin flexibility for the entire Antares workforce, who worked tirelessly for the past several months to prepare and successfully launch the upgraded rocket from Wallops Island on the OA-5 mission.”

Cygnus was designed from the start to launch on a variety of launch vehicles – in addition to Antares.

“This plan also allows NASA to again capitalize on the operational flexibility built into Orbital ATK’s Cygnus spacecraft to assure the space station receives a steady and uninterrupted flow of vital supplies, equipment and scientific experiments.”

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

It is not clear at this time who will shoulder the added cost of launching Cygnus OA-7 on Atlas instead of Antares.

Watch for Ken’s Antares/Atlas/Cygnus mission and launch reporting. He was reporting from on site at NASA’s Wallops Flight Facility, VA during the OA-5 launch campaign and previously from KSC for the OA-4 and OA-6 liftoffs.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

Antares Return to Flight Launch Likely Slips to August, Cygnus Completes Atmospheric Reentry

Antares rocket stands erect, reflecting off the calm waters the night before the first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014.    Credit: Ken Kremer/kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com

The long awaited maiden launch of Orbital ATK’s revamped Antares commercial rocket utilizing new first stage engines, from its Virginia launch base, will likely slip from July to August a company spokesperson confirmed to Universe Today.

The target date for the ‘Return to Flight’ launch of Antares on a cargo resupply mission for NASA to the International Space Station (ISS) is “likely to result in an updated launch schedule in the August timeframe,” Orbital ATK spokeswoman Sean Wilson told Universe Today.

The company had most recently been aiming towards an Antares launch date around July 6 from NASA’s Wallops Flight Facility – for its next NASA contracted mission to stock the ISS via the Orbital ATK Cygnus cargo freighter on a flight known as OA-5.

Meanwhile the firms most recently launched Cygnus OA-6 cargo ship departed the space station and completed its planned destructive reentry into the Earth’s atmosphere on Wednesday, June 22.

But before Orbital ATK can resume Antares/Cygnus cargo flights to the ISS, it had to successfully hurdle through a critically important milestone on the path to orbit – namely a static hot fire test of the significantly modified first stage to confirm that its qualified for launch.

Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.  Credit: NASA/Orbital ATK
Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A. Credit: NASA/Orbital ATK

To that end the aerospace firm recently completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.

A thorough analysis of the hot fire test results and its implications is underway.

“Our Antares team recently completed a successful stage test and is wrapping up the test data analysis,” Wilson said.

“Final trajectory shaping work is also currently underway, which is likely to result in an updated launch schedule in the August timeframe.”

In the meantime, company engineers continue to ready the rocket and payload.

“We are continuing to prepare for the upcoming launch of the Antares rocket and Cygnus spacecraft for the OA-5 cargo logistics mission to the International Space Station from NASA’s Wallops Flight Facility,” Wilson noted.

It’s also clear that a decision on a launch date target is some weeks away and depends on the busy upcoming manifest of other ISS missions coming and going.

“A final decision on the mission schedule, which takes into account the space station traffic schedule and cargo requirements, will be made in conjunction with NASA in the next several weeks.”

And it also must take into account the launch of the intervening SpaceX ISS cargo flight that was just postponed two days to no earlier than July 18.

Another factor is the delayed launch of the next manned crew on a Russian Soyuz capsule from late June into July. Blastoff of the three person crew from Russia, the US and Japan is set for July 7. OA-5 will deliver some 3 tons of science experiments and crew supplies.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

Antares launches had immediately ground to a halt following a devastating launch failure 20 months ago which destroyed the rocket and its critical payload of space station science and supplies for NASA in a huge fireball just seconds after blastoff – as witnessed by this author.

As a direct result consequence of the catastrophic launch disaster, Orbital STK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure, Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program told me in a prior interview.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

So the primary goal of the stage test was to confirm the effectiveness of the new engines and all the changes in the integrated rocket stage.

It’s not entirely clear at this time whether the Antares launch delay to August is due to changes in the ISS manifest scheduling or any lingering questions from the hot fire test or both.

“A final decision on the mission schedule definitely takes into account the completion of data analysis combined with the busy space station traffic schedule and NASA’s cargo requirements,” Wilson told me in a response requesting clarification.

Following a quick look immediately following the May 31 test, Orbital ATK officials initially reported that all seemed well, with the caveat that further data review is needed.

“Early indications show the upgraded propulsion system, core stage and launch complex all worked together as planned,” said Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program.

“Congratulations to the combined NASA, Orbital ATK and Virginia Space team on a successful test.”

Orbital ATK engineers will now “review test data over the next several days to confirm that all test parameters were met. ”

The test used the first stage core planned to launch the OA-7 mission from Wallops late this year.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. Credit: Ken Kremer/kenkremer.com

With the engine test completed, the OA-7 stage will be rolled back to the HIF processing hanger at Wallops and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission in August.

The mission of the OA-6 Cygnus ended on Wednesday, with a planned destructive reentry into the Earth’s atmosphere at 9:29 a.m. EDT.

Also known as the SS Rick Husband, it had spent 3 months in orbit since launching in March on a ULA Atlas V.

It departed the ISS on June 14 and continued several science experiments. Most notable was to successfully create the largest fire in space via the Spacecraft Fire Experiment-I (Saffire-I).

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Reborn Antares Raised at Virginia Launch Pad for Crucial May 31 Engine Test

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for upcoming May 31 engine test. Credit: Ken Kremer/kenkremer.com

WALLOPS ISLAND, VA – The soon to be reborn Orbital ATK Antares commercial rocket sporting new first stage engines has been raised at its repaired launch pad on Virginia’s scenic eastern shore for a long awaited test firing of the powerplants. The static test firing is now slated to take place in less than 3 days on Tuesday evening, May 31.

The now revamped launch vehicle – dubbed Antares 230 – has been ‘re-engined’ and upgraded with a pair of modern and more powerful first stage engines – the Russian-built RD-181 fueled by LOX/kerosene.

The engine test will be conducted using only the first stage of Antares at the Mid-Atlantic Regional Spaceport’s Pad-0A at NASA’s Wallops Flight Facility.

The raised rocket with the first stage capped at the top is visible right now at the Wallops pad – as seen in my new photos taken this week.

NASA announced that the static test firing is slated for no earlier than May 31 during a test window that runs from 5 p.m. to 8:15 p.m. EDT. As a contingency, the Wallops range has been reserved for backup test dates that run through June 5 just in case issues crop up.

NASA will not be carrying a live webcast of the test. Rather they will note the completion of the test on the Wallops’ Facebook and Twitter sites.

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

The test firing will be visible from various public viewing locations in the local Wallops area. However the NASA Wallops Visitor center will not be open.

NASA will not be carrying a live webcast of the test. Rather they will note the completion of the test on the Wallops’ Facebook and Twitter sites.

Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit:  Ken Kremer/kenkremer.com
Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

The test firing will be visible from various public viewing locations in the local Wallops area. However the NASA Wallops Visitor center will not be open.

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

The test involves firing up Antares dual first stage RD-181 engines at full 100% power (thrust) for a scheduled duration of approximately 30 seconds. Hold down restraints will keep the rocket firmly anchored at the pad during the test.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

To prepare for the static hot fire test, Orbital ATK technicians rolled the vehicle on a dedicated multi-wheeled transporter erector launcher from the rockets processing hangar inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A about a mile away.

A successful outcome is absolutely crucial for permitting Antares to carry out its ‘Return to Flight’ launch dubbed OA-5 and set for sometime this summer.

“The hot fire will demonstrate the readiness of the rocket’s first stage and the launch pad fueling systems to support upcoming flights,” said NASA officials.

Antares launches ground to a halt following a devastating launch failure 19 months ago which destroyed the rocket and its payload of space station science and supplies for NASA in a huge fireball.

The ‘Return to Flight’ blastoff – which could come as soon as July 2016 – will be the first for the private Antares rocket since that catastrophic launch failure on Oct. 28, 2014, just seconds after liftoff from Wallops. That flight was carrying Orbital ATK’s Cygnus cargo freighter on the critical Orb-3 resupply mission for NASA and the astronauts living and working on the International Space Station (ISS).

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

The RD-181 replaces the AJ26. The flight engines are built by Energomash in Russia.

“They are a good drop in replacement for the AJ26. And they offer 13% higher thrust compared to the AJ26,” said Kurt Eberly, Orbital ATK Antares deputy program manager, in an interview with Universe Today.

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure.

“This stage test paradigm is a design verification test,” said Eberly.

“After the 30 second test is done we will shut it down and have a pile of data to look at,” Eberly told Universe Today.

“Hopefully it will confirm all our environments and all our models and give us the confidence so we can proceed with the return to flight.”

Technicians have been processing the rocket at the pad to ready it for the test. They also conducted a wet dress rehearsal (WDR) and loaded the propellants like during an actual launch campaign.

The full up engine test follows the WDR.

“After the WDR we will do the stage test,” Eberly explained.

“It is a 30 second test. We will fire up both engines and hit all 3 power levels that we plan to use in flight.”

“We will use the thrust vector controls. So we will move the nozzles and sweep them through sinusoidal sweeps at different frequencies and excite various resonances and look for any adverse interaction between fluid modes and structural modes.”

The test uses the first stage core planned to launch the OA-7 mission from Wallops late this year.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. Credit: Ken Kremer/kenkremer.com

After the engine test is completed, the stage will be rolled back to the HIF and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission as soon as July.

“Orbital ATK is building, testing and flying the Antares rocket and Cygnus cargo spacecraft under NASA’s Commercial Resupply Services contract. NASA initiatives like the cargo resupply contracts are helping develop a robust U.S. commercial space transportation industry with the goal of achieving safe, reliable and cost-effective transportation to and from the International Space Station and low-Earth orbit,” according to NASA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Upgraded Antares Rolls Out to Virginia Launch Pad, High Stakes Engine Test Looms

Orbital ATK’s Antares first stage with the new engines is rolled from NASA Wallops Flight Facility’s Horizontal Integration Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on May 12, 2016, in preparation for the upcoming stage test in the next few weeks.   Credit: NASA's Wallops Flight Facility/Allison Stancil
Orbital ATK’s Antares first stage with the new engines is rolled from NASA Wallops Flight Facility’s Horizontal Integration Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on May 12, 2016, in preparation for the upcoming stage test in the next few weeks. Credit: NASA’s Wallops Flight Facility/Allison Stancil

An upgraded version of Orbital ATK’s commercially developed Antares rocket has at last rolled out to its launch pad on the Virginia shore – thus paving the path for a high stakes first stage engine test looming “in the next few weeks,” according to the aerospace firm.

“This stage test paradigm is a design verification test, said Kurt Eberly, Orbital ATK Antares deputy program manager, in an interview with Universe Today.

The rocket will be erected at the pad during the full power hot fire test which is scheduled to last approximately 30 seconds. Hold down restraints will keep the rocket firmly anchored at the pad.

“After the 30 second test is done we will shut it down and have a pile of data to look at,” Eberly told Universe Today.

“Hopefully it will confirm all our environments and all our models and give us the confidence so we can proceed with the return to flight.”

Indeed the significance of the hot fire engine test cannot be overstated because the entire future of Antares as a viable launch vehicle and resuming delivery of NASA cargo to the International Space Station (ISS) depends on a successful outcome of the crucial test firing – following a devastating launch failure 19 months ago.

Orbital ATK hopes to restart resupply missions to the crews living aboard the space station as soon as July – less than two months from today.

The now revamped launch vehicle dubbed Antares 230 has been re-engined and upgraded with a pair of modern new first stage engines, the Russian-built RD-181 fueled by LOX/kerosene.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. Credit: Ken Kremer/kenkremer.com

To prepare for the upcoming stage test, workers carefully assembled and thoroughly tested an Antares first stage equipped with the new RD-181 engines.

On May 12, 2016, they moved the vehicle on a dedicated multi-wheeled transporter from the Horizontal Integration Facility at NASA’s Wallops Flight Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A about a mile away.

Orbital ATK’s Antares first stage with the new engines is rolled from NASA Wallops Flight Facility’s Horizontal Integration Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on May 12, 2016, in preparation for the upcoming stage test in the next few weeks.   Credit: Orbital ATK
Orbital ATK’s Antares first stage with the new engines is rolled from NASA Wallops Flight Facility’s Horizontal Integration Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on May 12, 2016, in preparation for the upcoming stage test in the next few weeks. Credit: Orbital ATK

The team has about 3 weeks of check out work to complete before the live firing, including a wet dress rehearsal (WDR).

“The team will continue to work meticulously as they begin final integration and check outs on the pad and several readiness reviews prior to the test. The window for the stage test will be over multiple days to ensure technical and weather conditions are acceptable,” noted Orbital ATK in a statement.

The ‘Return to Flight’ blastoff – currently planned for as soon as July 2016 – will be the first for the private Antares rocket since a catastrophic launch failure on Oct. 28, 2014, just seconds after liftoff from Wallops. That flight was carrying Orbital ATK’s Cygnus cargo freighter on the critical Orb-3 resupply mission for NASA to the space station.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

Top Orbital ATK management soon decided to ditch the AJ26s, which were 40 year old refurbished engines, originally built during the Soviet era and originally known as the NK-33.

They sought a replacement and eventually decided to upgrade Antares by powering it with a pair of new Russian-made RD-181 main stage engines and modifying the first stage core structure to accommodate the new engines.

The RD-181 flight engines are built by Energomash in Russia.

“They are a good drop in replacement for the AJ26. And they offer 13% higher thrust compared to the AJ26,” Eberly noted.

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure.

Independent review teams have also been brought in to ensure that no stone is left unturned and everything is being done to achieve success.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

Now it’s time for the real deal. After all the hard work Antares is now at the pad.

“We place it on the pad about 3 weeks prior to the engine test,” Eberly told me. “Then we and do a series of integrated checks, and electrical checks and pressure checks on the feed lines.”

“Then we will do a wet dress rehearsal where we will load the tanks with propellants. We will load the pressure bottles, pressurize the tanks and then count down just like we would for the real stage test. And right before we ignite the engines we will call a halt to the sequencer.”

“Then we will detank and pick through all that data and do a readiness review.”

If the WDR goes well, the full up engine test will follow.

“Then we will do the stage test,” Eberly explained.

“It is a 30 second test. We will fire up both engines and hit all 3 power levels that we plan to use in flight.”

“We will use the thrust vector controls. So we will move the nozzles and sweep them through sinusoidal sweeps at different frequencies and excite various resonances and look for any adverse interaction between fluid modes and structural modes.”

Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). .   Credit: Ken Kremer (kenkremer.com)
Orbital Sciences Antares rocket first stage stands erect at Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops, in this file photo. Credit: Ken Kremer/kenkremer.com

The vehicle and pad will be outfitted with lots of special instrumentation to gather as much test data as possible.

“We will have a lot of accelerometers and extra instrumentation and extra microphones on the test article and around the pad.

“After the 30 second test is done we will shut it down and have a pile of data to look at.”

“That will hopefully confirm all our environments and all our models and give us the confidence so we can proceed with the return to flight on the OA-5 mission.”

The test uses the first stage core planned to launch the OA-7 mission late this year.

After the engine test is completed, the stage will be rolled back to the HIF and a new stage fully integrated with the Cygnus will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission as soon as July.

In the past 6 months, Orbital ATK has successfully resumed launches of their Cygnus cargo freighters to the ISS – as an interim measure until Antares is returned to flight status

They utilized the United Launch Alliance (ULA) Atlas V rocket to deliver two Cygnus resupply vessels to the ISS on the OA-4 flight in Dec. 2015 and OA-6 flight in March 2016.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Fuel Control Valve Faulted for Atlas Launch Anomaly, Flights Resume Soon

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

A critical fuel control valve has been faulted for the Atlas V launch anomaly that forced a premature shutdown of the rockets first stage engines during its most recent launch of a Cygnus cargo freighter to the International Space Station (ISS) last month – that nevertheless was successful in delivering the payload to its intended orbit.

Having identified the root cause of the engine shortfall, workers for Atlas rocket builder United Launch Alliance (ULA), have now stacked the booster slated for the next planned liftoff in the processing facility at their Cape Canaveral launch pad, the company announced in a statement Friday.

The Atlas rockets Centaur upper stage fired longer than normal after the first stage anomaly, saving the day by making up for the significant lack of thrust and “delivering Cygnus to a precise orbit, well within the required accuracy,” ULA said.

ULA says it hopes to resume launches of the 20 story tall rocket as soon as this summer, starting with the MUOS-5 communications satellite payload for the U.S. Navy.

Following a painstaking investigation to fully evaluate all the data, the ULA engineering team “determined an anomaly with the RD-180 Mixture Ratio Control Valve (MRCV) assembly caused a reduction in fuel flow during the boost phase of the flight,” the company confirmed in a statement.

The Atlas V first stages are powered by the Russian-made RD AMROSS RD-180 engines. The dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s are fueled by a mixture of RP-1 kerosene and liquid oxygen stored in the first stage.

Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The Centaur RL10C-1 second stage powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the first stage RD-180 engines.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, ULA spokesperson, told Universe Today.

Indeed Centaur fired for a minute longer than planned to inject Cygnus into its proper orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit,” said ULA.

MUOS-5 was originally supposed to blastoff on May 5. But the liftoff was put on hold soon after the Atlas V launch anomaly experienced during the March 22, 2016 launch of the Orbital ATK Cygnus OA-6 supply ship to the ISS for NASA.

Since then, ULA mounted a thorough investigation to determine the root cause and identify fixes to correct the problem with RD-180 Mixture Ratio Control Valve (MRCV) assembly, while postponing all Atlas V launches.

ULA has inspected, analyzed and tested their entire stockpile of RD-180 engines.

Last Friday, the Atlas V first stage for the MUOS-5 launch was erected inside ULA’s Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida. The five solid motors have been attached and the Centaur is next.

In this configuration, known as Launch Vehicle on Stand (LVOS) operation, technicians can further inspect and confirm that the RD-180 engines are ready to support a launch.

The two stage Atlas V for MUOS-5 will launch in its most powerful 551 configuration with five solid rocket boosters attached to the first stage, a single engine Aerojet Rocketdyne RL10C-1 Centaur upper stage and a 5-meter-diameter payload fairing.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit needed to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

ULA currently sports a year’s long manifest of future Atlas V launches in the pipeline. It includes a wide range of payloads for NASA, US and foreign governments, and military and commercial customers – all of who are depending on ULA maintaining its string of 106 straight launches with a 100% record of success since the company formed in 2006.

The Orbital ATK Cygnus CRS-6 space freighter was loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware for the orbital laboratory in support of over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft was being prepared for the Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus lifted off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

Cygnus successfully arrived and berthed at the ISS on March 26 as planned.

An exact date for the MUOS-5 launch has yet to be confirmed on the Eastern Range with the US Air Force.

ULA is in the process of coordinating launch dates with customers for their remaining Atlas V launches in 2016.

MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

ULA says they expect minimal impact and foresee completing all launches planned for 2016, including the top priority OSIRIS-REx asteroid mission for NASA which has a specific launch window requirement.

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Cygnus Commercial Space Freighter Arrives at Space Station with 3.5 Tons of Supplies

Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT.  Credit: NASA/ESA/Tim Peake
Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT. Credit: NASA/ESA/Tim Peake

KENNEDY SPACE CENTER, FL – Following a perfectly executed three day orbital rendezvous, NASA astronaut and Expedition 47 Commander Tim Kopra successfully reached out with the International Space Station’s robotic arm, Canadarm2, grabbed hold and captured Orbital ATK’s commercial Cygnus cargo freighter at 6:51 a.m. EDT, this morning, Saturday, March 26, 2016.

The ISS and Cygnus were soaring some 250 miles (400 kilometers) over the Indian Ocean at the time of capture following the cargo crafts blastoff atop a two stage United Launch Alliance (ULA) Atlas V at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl.

Robotics officers on the ground in Houston working with the station crew high above then maneuvered Cygnus – holding over 3.5 tons of critical cargo supplies and science – into position for final installation and berthing to the orbiting laboratory’s Earth-facing port on the Unity module a few hours later. It was finally bolted fully into place at approximately 10:52 a.m. EDT.

Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT. Credit: NASA TV
Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT. Credit: NASA TV

This Cygnus is named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

The crew plans to open the hatch to the SS Rick Husband tomorrow morning on Easter Sunday, March 26.

The Orbital ATK Cygnus CRS-6 space freighter is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware for the orbital laboratory in support of over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

A computer overlay with engineering data provides video of the Canadarm2 robotic arm maneuvering to capture the Orbital ATK Cygnus OA-6 space freighter on Saturday, March 26, 2016 at 651 a.m. EDT. Credit: NASA TV
A computer overlay with engineering data provides video of the Canadarm2 robotic arm maneuvering to capture the Orbital ATK Cygnus OA-6 space freighter on Saturday, March 26, 2016 at 651 a.m. EDT. Credit: NASA TV

All of Cygnus maneuvers were “executed to perfection for a flawless approach and rendezvous” after the three day trip from Florida to the ISS, as the vehicle closed in to within a few meters for grappling, said NASA commentator Rob Navius.

NASA TV showed spectacular HD views of Cygnus and its UltraFlex solar arrays – deployed 2 hours after launch – from station and robotic arm cameras during the final approach operation, as flight controllers closely monitored all spacecraft systems.

“The crew is ready for Cygnus approach to the capture point,” radioed Kopra.

“Station you are go for capture,” Mission Control radioed back.

Cygnus was placed into free drift mode before capture to prevent any accidental perturbations in the final seconds.

From his robotics work station in the Cupola, Kopra then put the arm in motion by about 6:40 a.m. EDT, during the final phase of the final approach. He extended the 57 foot long (19 meter long) arm to reach out and grab the aft end of Cygnus cargo craft at its grappling pin by closing the snares on the end effector.

ESA astronaut Tim Peake served as backup for arm operations while NASA astronaut Jeff Williams monitored Cygnus systems.

The SS Rick Husband was rock steady during its capture as the station was flying over South Africa and the Indian Ocean.

“Capture confirmed,” reported Navius just moments before the video downlink was temporarily lost as the station communications moved between satellites.

“Excellent work gentleman. Much appreciated. Made that look easy,” radioed Jeremy Hansen, a Canadian Space Agency astronaut from Houston mission control.

“We’d also like to say we are really honored to bring aboard the SS Rick Husband to the International Space Station,” radioed Kopra. “He was a personal hero to many of us. This will be the first Cygnus honoree who was directly involved with the construction of this great station.”

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

It took about 9 minutes to complete the approach from the 30 meter distant hold point to the final capture point where the SS Rick Husband Cygnus arrived at about 6:37 am EDT. NASA TV showed the grapple fixture gradually coming into view.

Cygnus approached precisely within the center of the approach corridor, said Peake, during continuing updates as the ship moved closer to the targeted berthing port. It was perfectly aligned for its capture point.

Cygnus grapple fixture is located at the bottom end of the vehicles service module, beside the thruster.

Kopra and Peake are spending their 103rd day on the station today. While Williams arrived just 8 days ago.

All burns to get to the initial rendezvous point in the keep out sphere 250 meters away were “right on the money. Every burn has been on course and on target, said NASA JSC commentator Navius in Houston, as Cygnus soared some 400 km over the Pacific.

“Everything has gone off without a hitch. A rock solid approach.”

Flight controllers in Houston and Orbital ATK’s Dulles control headquarters then gave the go ahead to resume moving and approach closer to the 30 meter hold point.

The actual berthing operation took place about an hour later than expected to double check that everything was precisely aligned and communications were fully established.

Controllers used the arm to move Cygnus in for capture. They commanded four gangs of four bolts to latch Cygnus to the common berthing mechanism (CBM) on the internally positioned Unity modules nadir or Earth-facing port.

The first and second stage captures were successfully completed by 10:52 a.m. EDT this morning, marking the official hard mating of Cygnus and the station.

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named SS Rick Husband in honor of the STS-107 mission commander.

Orbital ATK #Cygnus mated to Unity module at 10:52 a.m.  EDT (2:52 p.m. UTC). Graphic shows location of five spacecraft at station now.  Credit: NASA
Orbital ATK #Cygnus mated to Unity module at 10:52 a.m. EDT (2:52 p.m. UTC). Graphic shows location of five spacecraft at station now. Credit: NASA

The SS Rick Husband Cygnus is actually at the vanguard of a “constellation” of three resupply ships arriving at the station over a three week period of three weekends.

Next comes the Russian Progress 63 which will dock at Russia’s Zvezda module next weekend after launching this Thursday from site 31 at Kaszakhstan carrying another three tons of supplies.

Following Progress is the SpaceX Return To Flight (RTF) mission dubbed SpaceX CRS-8.

It is slated to launch on April 8 and arrive at the ISS on April 10 for berthing to the Earth-facing port of the Harmony module – at the end of the station where NASA space shuttles formerly docked. It carries another 3.5 tons of supplies.

So altogether the trio of international cargo ships will supply over 12 tons of station supplies in rapid succession over the next 3 weeks.

This choreography will set up America’s Cygnus and Dragon resupply craft to simultaneously be present and reside attached at adjacent ports on the ISS for the first time in history.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

Plans currently call for Cygnus to stay at station for approximately two months until May 20th, when it will be unbolted and unberthed for eventual deorbiting and reentry.

But first it will stay on orbit for about another eight days, said Orbital ATK’s Cygnus program manager Frank DeMauro in an interview with Universe Today.

After unberthing, Cygnus will be used to conduct several experiments including the Saffire-1 experiment, it will deploy nanosats from an externally mounted carrier, and the REBR experiment will monitor the burn-up of Cygnus during the fiery reentry into the Earth’s atmosphere, said DeMauro.

Orbital ATK’s attention then shifts to the next Cygnus launch on the Return to Flight, or RTF, mission of the firms Antares rocket from NASA Wallops on the eastern shore of Virginia.

OA-6 is only the second Cygnus to be launched atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida and continuing mission reports.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: Mobius video camera placed at Florida launch pad captures blastoff up close of Orbital ATK OA-6 (CRS-6) mission riding to orbit atop a United Launch Alliance Atlas V rocket on March 22, 2016 at 11:05 p.m. EDT from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

Atlas V Engine Anomaly Forces Thrust Makeup During Cygnus Launch, Next Flight Delayed

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – This week’s Atlas V rocket launch of a Cygnus cargo ship to the International Space Station (ISS) apparently experienced a first stage engine anomaly during the climb to space that required a longer firing of the boosters upper stage engine so the payload could successfully achieve the required orbit.

The stunningly beautiful nighttime blastoff of the United Launch Alliance (ULA) Atlas V from the Florida space coast on Tuesday, March 22, was not quite as flawless as initially thought and marred by the early engine shutdown which has now forced a postponement of the next planned Atlas V launch as company engineers painstakingly evaluate the data.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, spokesperson for rocket maker ULA, told Universe Today.

“The ULA engineering team is reviewing the data to determine the root cause of the occurrence.”

The Centaur RL10C-1 powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the Atlas V’s first stage RD-180 engines.

Indeed the Centaur had to fire for a minute longer than planned to inject Cygnus into its target orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit.”

“The team is evaluating the occurrence as part of the standard post-flight data analysis. Following successful spacecraft separation, Centaur performed a disposal burn,” Chessagne elaborated.

The two stage ULA Atlas V lifted off on time at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, under a picturesque moonlit sky carrying an Orbital ATK Cygnus spacecraft on a resupply mission for NASA to the ISS.

Following a 21-minute ascent, the S.S. Rick Husband Cygnus spacecraft was successfully deployed into its intended orbit approximately 144 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital ATK confirmed in a statement.

The Russian-made RD AMROSS RD-180 engines power the Atlas V first stage and the dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit need to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The cause of the first stage engine shortfall has not been announced. ULA has launched a thorough investigation to determine root cause as to whether for example it’s the RD-180 engine itself, a faulty sensor, fuel related, ground support equipment or a myriad of some other rocket components or issues.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

Although the Atlas V did successfully launch and deploy the commercial Cygnus CRS-6/OA-6 spacecraft into the required orbit, the Centaur was pressed into extra duty in real time to propel the payload.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

At the post launch media briefing, ULA program manager for NASA missions Vern Thorp, said that “ in a little over 20 minutes we went from liftoff to delivering Cygnus into exactly the orbit that it wanted to be in. This was our second successful cargo mission [for Orbital ATK] since December.”

“We were targeting a 230 kilometer circular orbit and we came very close to that as we normally do, just a fraction of a kilometer off. Well within the normal dispersions.”
“We nailed it. We got Cygnus where it wants to go.”

Asked about the Centaur he said that the prelaunch predictions are based on preliminary trajectories and can vary depending on the actual conditions at launch.

“What I do know is that Centaur nailed the orbit. Like every mission, we’re going to do a very, very detailed post-flight review. We always do and we always have done that. That’s to make sure that everything performed properly. From everything we’ve seen so far, the mission was pretty nominal.”

Now as a result of the post-flight review into the engine anomaly and velocity shortfall, the next launch of the “Atlas V carrying the MUOS-5 mission for the U.S. Navy and the U.S. Air Force has been delayed to no earlier than May 12,” Chassagne added.

ULA needs to “further review the data anomaly experienced during the OA-6 mission.”

“The delay will allow additional time to review the data and to confirm readiness for the MUOS-5 mission.”

The Atlas V/MUOS-5 mission will lift off from the same pad at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, whenever a launch target date is announced by ULA.

ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek
ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

Meanwhile the Cygnus CRS-6/OA-6 spacecraft continues chasing down the ISS for a planned arrival early Saturday morning, March 26.

The spacecraft will arrive at the station on Saturday, March 26. At that time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.

NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The Cygnus CRS-6/OA-6 payload of more than 16,000 pounds (7200 kg) weighed in as the heaviest payload to launch on an Atlas V to date.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

Watch for Ken’s ongoing Cygnus launch reports.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Streaks Galore as Cygnus Soars Chasing Station for Science; Photos, Videos

Long exposure streak shot of blastoff of United Launch Alliance Atlas V rocket carrying Orbital ATK's Cygnus spacecraft at 11:05 p.m. EDT on March 22, 2016, with foreground view of world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.  Atlas V lifted off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Alex Polimeni/Spaceflight Now
Long exposure streak shot of blastoff of United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus spacecraft at 11:05 p.m. EDT on March 22, 2016, with foreground view of world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Atlas V lifted off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Alex Polimeni/Spaceflight Now

KENNEDY SPACE CENTER, FL – Tuesday evening, March 22, turned into ‘streaks galore’ on Florida’s space coast, as the nighttime launch of an Orbital ATK Cygnus cargo freighter atop an Atlas V rocket was captured in unforgettable fashion by talented space photographers as it chases down the International Space Station (ISS), loaded with hundreds of science experiments.

Check out this expanding gallery of breathtaking photos and videos collected from many of my photojournalist friends and colleagues – who collectively count as the best space photographers worldwide!

We all descended on the sunshine state to record the Tuesday’s blastoff of the United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus CRS-6 (OA-6) spacecraft from an array of locations ringing Cape Canaveral’s seaside launch pad as well as remote cameras we all set as media directly at the launch pad.

The two stage ULA Atlas V lifted off right on time at 11:05 p.m. EDT from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, into a picturesque moonlit sky on a resupply mission to the ISS.

ULA Atlas V rockets to orbits with Orbital ATK Cygnus OA-6 in this long exposure streak shot taken from the roof of the world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.  Liftoff from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida occurred at 11:05 p.m. EDT on March 22, 2016 . Credit: Julian Leek
ULA Atlas V rockets to orbits with Orbital ATK Cygnus OA-6 in this long exposure streak shot taken from the roof of the world famous Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Liftoff from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida occurred at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

One could not have asked for better weather. Conditions were near perfect at launch time with virtually no winds and clouds.

Cygnus rode to orbit on a fountain of fire. And right now she is in hot pursuit of the million pound orbiting outpost crewed by an international team of six astronauts and cosmonauts.

The streak shots vividly show how the rocket magnificently illuminated the scattered thin clouds hovering over the seaside launch pad as it ascended and arced over eastwards towards Africa.

Streak shot shows United Launch Alliance Atlas V rocket carrying Orbital ATK's Cygnus spacecraft soaring over Space Launch Complex- 37 housing upcoming Delta IV Heavy rocket after lift off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016.  The Cygnus is on a resupply mission to the International Space Station and scheduled to arrive at the orbiting laboratory Saturday, March 26.  Credit: United Launch Alliance/Ben Cooper
Streak shot shows United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus spacecraft soaring over Space Launch Complex- 37 housing upcoming Delta IV Heavy rocket after lift off from nearby Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. The Cygnus is on a resupply mission to the International Space Station and scheduled to arrive at the orbiting laboratory Saturday, March 26. Credit: United Launch Alliance

The Orbital ATK Cygnus CRS-6 (OA-6) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration to accommodate the Cygnus.

The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

It was the ULA’s 62nd straight success with the Atlas V as well as the firms third launch in 2016 and the 106th launch since the company formed in 2006.

Gorgeous launch of ULA Atlas V with Cygnus OA-6 mission in this streak shot taken over Cocoa Beach on March 22, 2016! Weather couldn't have cooperated better!  Credit: Talia Landman/AmericaSpace
Gorgeous launch of ULA Atlas V with Cygnus OA-6 mission in this streak shot taken over Cocoa Beach on March 22, 2016! Weather couldn’t have cooperated better! Credit: Talia Landman/AmericaSpace

The Cygnus CRS-6 (OA-6) mission is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.

Watch these launch videos from remote video cameras set right at the launch pad showing the full fury of liftoff sounding off with the deafening thunder of some one million pounds of liftoff thrust.

Video caption: Flame trench view of the Orbital/ATK OA-6 resupply module launch to the ISS on a ULA Atlas 5 rocket from Pad 41 of the CCAFS on March 22, 2016. Credit: Jeff Seibert/AmericaSpace

Video caption: Mobius video camera placed at Florida launch pad captures blastoff up close of Orbital ATK OA-6 (CRS-6) mission riding to orbit atop a United Launch Alliance Atlas V rocket on March 22, 2016 at 11:05 p.m. EDT from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

Among the research highlights are experiments like Strata-1 which will evaluate how soil on airless bodies like asteroids moves about in microgravity, Gecko Gripper to test adhesives similar those found on geckos’ feet, Meteor will evaluate the chemical composition of meteors entering the Earth’s atmosphere, Saffire will purposely set a large fire inside Cygnus after it unberths from the ISS to examine how fires spread in space, and a nanosat deployer mounted externally will deploy over two dozen nanosats also after unberthing.

A new 3D printer featuring significantly upgraded capabilities is also on board.

Atlas V Cygnus OA-6 streak shot on March 22, 2016. 246 second exposure from Satellite Beach.  Credit: John Kraus
Atlas V Cygnus OA-6 streak shot on March 22, 2016. 246 second exposure from Satellite Beach. Credit: John Kraus

The spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.

NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This ‘Frankenstein’ liftoff image is the result of a 160+ image time lapse sequence compiled from Atlas V rocket launch carrying the OA-6 ISS resupply #Cygnus capsule,  showing streak shot and star trails as captured at the NASA causeway at KSC/CCAFS. Launched by United Launch Alliance for Orbital ATK on March 22, 2016 at 11:05 p.m. EDT.  Credit: Mike Seeley
This ‘Frankenstein’ liftoff image is the result of a 160+ image time lapse sequence compiled from Atlas V rocket launch carrying the OA-6 ISS resupply #Cygnus capsule, showing streak shot and star trails as captured at the NASA causeway at KSC/CCAFS. Launched by United Launch Alliance for Orbital ATK on March 22, 2016 at 11:05 p.m. EDT. Credit: Michael Seeley
ULA Atlas V carrying Orbital ATK Cygnus CRS-6/OA-6 streaks skyward on March 22, 2016. Credit:  Ben Smegelsky
ULA Atlas V carrying Orbital ATK Cygnus CRS-6/OA-6 streaks skyward on March 22, 2016. Credit: Ben Smegelsky
 ULA Atlas V/Cygnus OA-6 intermittent streak shot following launch on March 22, 2016 is taken from roof of Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.   Credit: Ken Kremer/kenkremer.com

ULA Atlas V/Cygnus OA-6 intermittent streak shot following launch on March 22, 2016 is taken from roof of Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Photographers on the VAB roof at KSC, preparing for Atlas V/Cygnus launch on March 22, 2016.  Credit: Jared Haworth
Photographers on the VAB roof at KSC, preparing for Atlas V/Cygnus launch on March 22, 2016. Credit: Jared Haworth
A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Stunning Nighttime Cygnus Freighter Rockets to ISS Stocked with Science Mesmerizing Spectators

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A stunningly beautiful nighttime launch mesmerized delighted spectators as it roared off a Florida space coast launch pad late Tuesday night, March 22, on a mission for NASA stocked with over three tons of science and supplies bound for the multinational crews working aboard the International Space Station (ISS).

A United Launch Alliance (ULA) Atlas V rocketed raced to orbit from Cape Canaveral Air Force Station, Fl, carrying an enlarged Cygnus commercial resupply spacecraft on the Orbital ATK CRS-6 mission to the ISS.

The venerable Atlas V lifted off right on target at 11:05 p.m. EDT from Space Launch Complex 41 into a picturesque moonlit sky that magnificently illuminated the scattered thin clouds hovering over the seaside launch pad for the hordes of excited folks and families lining the beaches and lucky to witness what may be history’s last launch of a Cygnus from Florida.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Future liftoffs of the private Orbital ATK Cygnus supply truck designed to stock the station will return to their original launch site on Virginia’s eastern shore starting with the next mission for their NASA customer sometime this summer.

Cygnus launches to the ISS normally start from NASA’s Wallops Flight Facility in Virginia.

But a catastrophic failure of the Orbital ATK Antares rocket moments after liftoff on Oct. 28, 2014, forced Orbital to seek and book an alternative launch vehicle while the company redesigned and reengined Antares first stage with new powerful powerplants for the ride to orbit.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m. NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The commercial Cygnus cargo freighter was built by Orbital ATK, based in Dulles, Virginia.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

This flight is also known as OA-6 and is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

About a quarter of the cargo is devoted to science and research gear. The cargo includes 3279 kg of science investigations, 1139 kg of crew supplies, 1108 kg of vehicle hardware, 157 kg of spacewalk equipment, and 98 kg of computer resources.
Here a NASA description of a few of the scientific highlights:

– Gecko Gripper, testing a mechanism similar to the tiny hairs on geckos’ feet that lets them stick to surfaces using an adhesive that doesn’t wear off,

– Strata-1, designed to evaluate how soil on small, airless bodies such as asteroids behaves in microgravity.

– Meteor, an instrument to evaluate from space the chemical composition of meteors entering Earth’s atmosphere. The instrument is being re-flown following its loss on earlier supply missions.

– Saffire, which will set a large fire inside the Cygnus in an unprecedented study to see how large fires behave in space. The research is vital to selecting systems and designing procedures future crews of long-duration missions can use for fighting fires.

– Cygnus is carrying more than two dozen nanosatellites that will be ejected from either the spacecraft or the station at various times during the mission to evaluate a range of technology and science including Earth observations.

Here a cool video prelaunch look at Cygnus and me in the NASA Kennedy Space Center clean room discussing the Meteor experiment:

Video Credit: Thaddeus Cesari/VideoShampoo.com

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named ‘SS Rick Husband’ in honor of the STS-107 mission commander.

Cygnus will spend approximately two months docked at the ISS.

OA-6 is only the second Cygnus to be launched atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21-23: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22/23

The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Full Moon Offers Spectacular Nighttime Launch Outlook for Orbital ATK Cygnus Resupply to ISS on Atlas V on March 22 – Watch Live

The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Clear skies and a nearly full Moon offer the distinct possibility to witness an astronomical launch spectacular for all those who have traveled near and far to witness the nighttime liftoff of an Orbital ATK Cygnus commercial cargo mission for NASA to the space station on Tuesday night, March 22.

With the heaviest Cygnus ever bolted atop and packed to the gills with science and supplies for the six person crew living and working aboard the International Space Station (ISS), a venerable United Launch Alliance Atlas V rocket is due to blastoff on March 22, at 11:05 p.m. EDT from Cape Canaveral Air Force Station in Florida.

The nighttime liftoff is targeted for 11:05 PM EDT March 22, at the opening of a 30 minute launch window from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

The ULA Atlas V rocket will liftoff on the CRS-6 resupply mission with the private Orbital ATK Cygnus spacecraft under a commercial resupply services (CRS) contract to NASA.

The Atlas V/Cygnus CRS-6 launch coverage will be broadcast on NASA TV and the NASA launch blog beginning at 10 PM, Tuesday night.

You can watch the launch live at – http://www.nasa.gov/multimedia/nasatv/index.html

NASA will also provide additional live coverage overnight of the critical solar array deployment at 12:45 a.m. March 23 followed be a post-launch briefing will be approximately two hours after launch.

The weather forecast has been upgraded and currently calls for an unusually favorable 90 percent chance of acceptable conditions at launch time.

Up close view of umbilical’s connecting to Atlas V rocket carrying Orbital ATK CRS-6 launch vehicle to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Up close view of umbilical’s connecting to Atlas V rocket carrying Orbital ATK CRS-6 launch vehicle to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

In case of a delay for any reason due to weather or technical issues the back up launch opportunity is slight earlier at 10:40 p.m. Wednesday, March 23. NASA TV coverage would start at 9:45 p.m.

The spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m. NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

The commercial Cygnus cargo freighter was built by Orbital ATK, based in Dulles, Virginia.

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

This flight is also known as OA-6 and is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

About a quarter of the cargo is devoted to science and research gear. The cargo includes 3279 kg of science investigations, 1139 kg of crew supplies, 1108 kg of vehicle hardware, 157 kg of spacewalk equipment, and 98 kg of computer resources.
Here a NASA description of a few of the scientific highlights:

– Gecko Gripper, testing a mechanism similar to the tiny hairs on geckos’ feet that lets them stick to surfaces using an adhesive that doesn’t wear off.

– Strata-1, designed to evaluate how soil on small, airless bodies such as asteroids behaves in microgravity.

– Meteor, an instrument to evaluate from space the chemical composition of meteors entering Earth’s atmosphere. The instrument is being re-flown following its loss on earlier supply missions.

– Saffire, which will set a large fire inside the Cygnus in an unprecedented study to see how large fires behave in space. The research is vital to selecting systems and designing procedures future crews of long-duration missions can use for fighting fires.

– Cygnus is carrying more than two dozen nanosatellites that will be ejected from either the spacecraft or the station at various times during the mission to evaluate a range of technology and science including Earth observations.

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named ‘SS Rick Husband’ in honor of the STS-107 mission commander.

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Cygnus will spend approximately two months docked at the ISS.

OA-6 is only the second Cygnus to be launched atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The Cygnus spacecraft for the upcoming Orbital ATK Commercial Resupply Services-6 mission is encapsulated inside its payload fairing as it moves past the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. It is being moved to Space Launch Complex-41 at Cape Canaveral Air Force Station.  Credits: NASA/Dimitrios Gerondidakis
The Cygnus spacecraft for the upcoming Orbital ATK Commercial Resupply Services-6 mission is encapsulated inside its payload fairing as it moves past the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. It is being moved to Space Launch Complex-41 at Cape Canaveral Air Force Station. Credits: NASA/Dimitrios Gerondidakis

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21/22: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22