Atlas V Engine Anomaly Forces Thrust Makeup During Cygnus Launch, Next Flight Delayed

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – This week’s Atlas V rocket launch of a Cygnus cargo ship to the International Space Station (ISS) apparently experienced a first stage engine anomaly during the climb to space that required a longer firing of the boosters upper stage engine so the payload could successfully achieve the required orbit.

The stunningly beautiful nighttime blastoff of the United Launch Alliance (ULA) Atlas V from the Florida space coast on Tuesday, March 22, was not quite as flawless as initially thought and marred by the early engine shutdown which has now forced a postponement of the next planned Atlas V launch as company engineers painstakingly evaluate the data.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, spokesperson for rocket maker ULA, told Universe Today.

“The ULA engineering team is reviewing the data to determine the root cause of the occurrence.”

The Centaur RL10C-1 powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the Atlas V’s first stage RD-180 engines.

Indeed the Centaur had to fire for a minute longer than planned to inject Cygnus into its target orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit.”

“The team is evaluating the occurrence as part of the standard post-flight data analysis. Following successful spacecraft separation, Centaur performed a disposal burn,” Chessagne elaborated.

The two stage ULA Atlas V lifted off on time at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, under a picturesque moonlit sky carrying an Orbital ATK Cygnus spacecraft on a resupply mission for NASA to the ISS.

Following a 21-minute ascent, the S.S. Rick Husband Cygnus spacecraft was successfully deployed into its intended orbit approximately 144 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital ATK confirmed in a statement.

The Russian-made RD AMROSS RD-180 engines power the Atlas V first stage and the dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit need to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The cause of the first stage engine shortfall has not been announced. ULA has launched a thorough investigation to determine root cause as to whether for example it’s the RD-180 engine itself, a faulty sensor, fuel related, ground support equipment or a myriad of some other rocket components or issues.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The first stage is powered by RD-180 engines that shut down 6 seconds early for an undetermined reason. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

Although the Atlas V did successfully launch and deploy the commercial Cygnus CRS-6/OA-6 spacecraft into the required orbit, the Centaur was pressed into extra duty in real time to propel the payload.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

At the post launch media briefing, ULA program manager for NASA missions Vern Thorp, said that “ in a little over 20 minutes we went from liftoff to delivering Cygnus into exactly the orbit that it wanted to be in. This was our second successful cargo mission [for Orbital ATK] since December.”

“We were targeting a 230 kilometer circular orbit and we came very close to that as we normally do, just a fraction of a kilometer off. Well within the normal dispersions.”
“We nailed it. We got Cygnus where it wants to go.”

Asked about the Centaur he said that the prelaunch predictions are based on preliminary trajectories and can vary depending on the actual conditions at launch.

“What I do know is that Centaur nailed the orbit. Like every mission, we’re going to do a very, very detailed post-flight review. We always do and we always have done that. That’s to make sure that everything performed properly. From everything we’ve seen so far, the mission was pretty nominal.”

Now as a result of the post-flight review into the engine anomaly and velocity shortfall, the next launch of the “Atlas V carrying the MUOS-5 mission for the U.S. Navy and the U.S. Air Force has been delayed to no earlier than May 12,” Chassagne added.

ULA needs to “further review the data anomaly experienced during the OA-6 mission.”

“The delay will allow additional time to review the data and to confirm readiness for the MUOS-5 mission.”

The Atlas V/MUOS-5 mission will lift off from the same pad at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, whenever a launch target date is announced by ULA.

ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek
ULA Atlas V rockets to orbit with Orbital ATK Cygnus OA-6 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 11:05 p.m. EDT on March 22, 2016. Credit: Julian Leek

Meanwhile the Cygnus CRS-6/OA-6 spacecraft continues chasing down the ISS for a planned arrival early Saturday morning, March 26.

The spacecraft will arrive at the station on Saturday, March 26. At that time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.

NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

The Cygnus CRS-6/OA-6 payload of more than 16,000 pounds (7200 kg) weighed in as the heaviest payload to launch on an Atlas V to date.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

Watch for Ken’s ongoing Cygnus launch reports.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

X-37B Air Force Space Plane Launches on 4th Mystery Military Mission and Solar Sailing Test

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com
Story updated with additional details and photos[/caption]

The X-37B, a reusable Air Force space plane launched today, May 20, from Cape Canaveral, Florida, on its fourth mission steeped in mystery as to its true goals for the U.S . military and was accompanied by ten tiny cubesat experiments for NASA and the NRO, including a solar sailing demonstration test for The Planetary Society.

The military space plan successfully blasted off for low Earth orbit atop a 20 story United Launch Alliance (ULA) Atlas V rocket on the clandestine Air Force Space Command 5 (AFSPC-5) satellite mission for the U.S. Air Force Rapid Capabilities Office at 11:05 a.m. EDT (1505 GMT) today, May 20, from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida.

The weather cooperated for a spectacular liftoff from the Florida space coast, which was webcast live by ULA until five minutes after launch when it went into a communications blackout shortly after announcing the successful ignition of the Centaur upper stage.

The exact launch time was classified until it was released by the Department of Defense this morning. Early this morning the four hour launch window was narrowed down to two small windows of opportunity.

USAF X-37B orbital test vehicle launches atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle launches atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

Among the experiments for the flight are 10 CubeSats housed in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage. Together they are part of the National Reconnaissance Office’s (NRO’s) Ultra Lightweight Technology and Research Auxiliary Satellite (ULTRASat). The 10 CubeSats in ULTRASat are managed by the NRO and NASA. They are contained in eight P-Pods from which they will be deployed in the coming days.

Also aboard the X-37B is a NASA materials science experiment called METIS and an advanced Hall thruster experiment. The Hall thruster is a type of electric propulsion device that produces thrust by ionizing and accelerating a noble gas, usually xenon.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and The Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. Photons from the sun should push on the solar sails.

“The purpose of this LightSail demonstration test is to verify telemetry, return photos return and to test the deployment of the solar sails,” said Bill Nye, the Science Guy), and President of The Planetary Society, during the X-37B launch webcast.

“LightSail is comprised of three CubeSats that measure about 30 cm by 10 cm.”

“It’s smaller than a shoebox, everybody! And the sail that will come out of it is super shiny mylar. We’re very hopeful that the thing will deploy properly, the sunlight will hit it and we’ll get a push.”

United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

“ULA is honored to launch this unique spacecraft for the U.S Air Force. Congratulations to the Air Force and all of our mission partners on today’s successful launch! The seamless integration between the Air Force, Boeing, and the entire mission team culminated in today’s successful launch of the AFSPC-5 mission” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

The two stage Atlas V stands 206 feet tall and weighs 757,000 pounds.

The X-37B was carried to orbit by the Atlas V in its 501 configuration which includes a 5.4-meter-diameter payload fairing and no solid rocket motors. The Atlas first stage booster for this mission was powered by the RD AMROSS RD-180 engine generating some 850,000 pounds of thrust and fired for approximately the first four and a half minutes of flight. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The X-37B space plane was to separate from the Centaur about 19 minutes after liftoff. The Centaur continued firing separately with the CubeSat deployment, including the Planetary Society’s LightSail test demoonstration, into a different orbit later.

Overall this was ULA’s sixth launch of the 501 configuration the 54th mission to launch on an Atlas V rocket. This was also ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006.

The OTV is somewhat like a miniature version of NASA’s space shuttles.

Boeing has built two OTV vehicles. But it is not known which of the two vehicles was launched today.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch.  Credit: Ken Kremer/kenkremer.com
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA

Assembling and Launching Boeing’s CST-100 Private Space Taxi – One on One Interview with Chris Ferguson, Last Shuttle Commander; Part 2

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Story updated[/caption]

KENNEDY SPACE CENTER, FL – Boeing expects to begin “assembly operations of our commercial CST-100 manned capsule soon at the Kennedy Space Center,” Chris Ferguson, commander of NASA’s final shuttle flight and now director of Boeing’s Crew and Mission Operations told Universe Today in an exclusive one-on-one interview about Boeing’s space efforts. In part 1, Ferguson described the maiden orbital test flights to the ISS set for 2017 – here.

In part 2, we focus our discussion on Boeings’ strategy for building and launching the CST-100 ‘space taxi’ as a truly commercial space endeavor.

To begin I asked; Where will Boeing build the CST-100?

“The CST-100 will be manufactured at the Kennedy Space Center (KSC) in Florida inside a former shuttle hanger known as Orbiter Processing Facility 3, or OPF-3, which is now [transformed into] a Boeing processing facility,” Ferguson told me. “Over 300 people will be employed.”

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

During the shuttle era, all three of NASA’s Orbiter Processing Facilities (OPFs) were a constant beehive of activity for thousands of shuttle workers busily refurbishing the majestic orbiters for their next missions to space. But following Ferguson’s final flight on the STS-135 mission to the ISS in 2011, NASA sought new uses for the now dormant facilities.

So Boeing signed a lease for OPF-3 with Space Florida, a state agency that spent some $20 million modernizing the approximately 64,000 square foot hanger for manufacturing by ripping out all the no longer needed shuttle era scaffolding, hardware and equipment previously used to process the orbiters between orbital missions.

Boeing takes over the OPF-3 lease in late June 2014 following an official handover ceremony from Space Florida. Assembly begins soon thereafter.

When will CST-100 spacecraft manufacturing begin?

“The pieces are coming one by one from all over the country,” Ferguson explained. “Parts from our vendors are already starting to show up for our test article.

“Assembly of the test article in Florida starts soon.”

The CST-100 is being designed at Boeing’s Houston Product Support Center in Texas.

It is a reusable capsule comprised of a crew and service module that can carry a mix of cargo and up to seven crew members to the International Space Station (ISS) and must meet stringent safety and reliability standards.

How will the pressure vessel be manufactured? Will it involve friction stir welding as is the case for NASA’s Orion deep space manned capsule?

“There are no welds,” he informed.

“The pressure vessel is coming from Spincraft, an aerospace manufacturing company in Massachusetts.”

Spincraft has extensive space vehicle experience building tanks and assorted critical components for the shuttle and other rockets.

“The capsule is produced by Spincraft using a weld-free process. It’s made as a single piece by a proprietary spun form process and machined out from a big piece of metal.”

The capsule measures approximately 4.56 meters (175 inches) in diameter.

“The service module will be fabricated in Florida.”

The combined crew and service modules are about 5.03 meters (16.5 feet) in length.

“In two years in 2016, our CST-100 will look like the Orion EFT-1 capsule does now at KSC, nearly complete [and ready for the maiden test flight]. Orion is really coming along,” Ferguson beamed while contemplating a bright future for US manned spaceflight.

He is saddened that it’s been over 1000 days since his crew’s landing inside shuttle Atlantis in July 2011.

Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL.   Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

With Boeing’s long history in aircraft and aerospace manufacturing, the CST-100 is being designed and built as a truly commercial endeavor.

Therefore the spacecraft team is able to reach across Boeing’s different divisions and diverse engineering spectrum and draw on a vast wealth of in-house expertise, potentially giving them a leg up on commercial crew competitors like SpaceX and Sierra Nevada Corp.

Nevertheless, designing and building a completely new manned spaceship is a daunting task for anyone. And no country or company has done it in decades.

How hard has this effort been to create the CST-100? – And do it with very slim funding from NASA and Boeing.

“Well any preconceived notion I had on building a human rated spacecraft has been completely erased. This is really hard work to build a human rated spacecraft!” Ferguson emphasized.

“And the budget is very small – without a lucrative government contract as used in the past to build these kind of spacecraft.”

“Our budget now is an order of magnitude less than to build the shuttle – which was about $35 to $42 Billion in 2011 dollars. The budget is a lot less now.”

Read more about the travails of NASA’s commercial crew funding situation in Part 1.

The team size now is just a fraction of what it was for past US crewed spaceships.

“So to support this we have a pretty small team.”

“The CST-100 team of a couple hundred folks works very hard!”

“For comparison, the space shuttle had 30,000 people working on it at the peak. By early 2011 there were 11,000. We flew on STS-135 with only 4,000 people in July 2011.”

NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011.   From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer - kenkremer.com
NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011. From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS).
Credit: Ken Kremer – kenkremer.com

Boeing’s design philosophy is straightforward; “It’s a simple ride up to and back from space,” Ferguson emphasized to me.

Next we turned to the venerable Atlas V rocket that will launch Boeing’s proposed space taxi. But before it can launch people it must first be human rated, certified as safe and outfitted with an Emergency Detection System (EDS) to save astronauts lives in a split second in case of a sudden and catastrophic in-flight anomaly.

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

United Launch Alliance (ULA) builds the two stage Atlas V and is responsible for human rating the vehicle which has a virtually unblemished launch record of boosting a wide array of advanced US military satellites and NASA’s precious one-of-a-kind robotic science explorers like Curiosity, JUNO, MAVEN and MMS on far flung interplanetary voyages of discovery.

What modifications are required to man rate the Atlas V to launch humans on Boeing’s CST-100?

“We will launch on an Atlas V that’s being retrofitted to meet NASA’s NPR human rating standards for redundancy and the required levels of fault tolerance,” Ferguson explained.

“So the rocket will have all the safety NASA wants when it flies humans.”

“Now with the CST-100 you can do all that in a smaller package [compared to shuttle].”

“The Atlas V will also be modified by ULA to include an Emergency Detection System (EDS). It’s a system not unlike what Apollo and Gemini had, which was much more rudimentary but quite evolved for its day.”

“Their EDS would monitor critical parameters like pitch, roll, yaw rates, critical engine parameters. It measures the time to criticality. You know the time to criticality for certain failures is so short that they didn’t think humans could react to it in time. So it was essentially automated.”

“So if it [EDS] sensed large pitch or yaw excursions, it would self jettison. And the escape system would kick in automatically.”

The Atlas V is already highly reliable. The EDS is one of the few systems that had to be added for human flights?

“Yes.”

“We also wanted a better abort system performance to go with the two engine Centaur upper stage we elected to use instead of the single engine Centaur.”

The purpose is to shut down the Centaur engine firing [in an emergency].”

“The two engine Centaur has flown many times. But it has never flown on an Atlas V. So there is a little bit of recertification and qualification to be done by ULA to go along with that also.”

Does that require a lot of work?

“ULA doesn’t seem to think the work to be done is all that significant. There is some work to be done.”

So it’s not a showstopper. Can ULA meet your 2017 launch schedule?

“Yes.”

“Before an engine fails it vibrates. So when you talk about automated ‘Red Lines’ you have to be careful that first you “Do No Harm” – and not make the situation even worse.”

“So we’ll see how ULA does building this,” Ferguson stated.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

The future of the CST-100 project hinges on whether NASA awards Boeing a contract to continue development and assembly work in the next round of funding (dubbed CCtCAP) from the agency’s Commercial Crew Program (CCP). The CCP seed money fosters development of a safe, reliable and new US commercial human spaceship to low Earth orbit as a public/private partnership.

NASA’s announcement of the CCP contract winners is expected around late summer 2014.

Based on my discussions with NASA officials, it seems likely that the agency could select at least two winners to move on – to spur competition and thereby innovation – from among the trio of American aerospace firms competing.

Besides Boeing’s CST-100, the SpaceX Dragon and Sierra Nevada Dream Chaser vehicles are also in the running for the contract to restore America’s capability to fly humans to Earth orbit and the International Space Station (ISS) by 2017.

In Part 3 we’ll discuss with Chris Ferguson the requirements for how many and who will fly aboard the CST-100 and much more. Be sure to read Part 1 here.

Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Boeing CST-100 space taxi launch atop Atlas V booster will resemble this photo of NASA’s Mars bound MAVEN spacecraft launched by Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com

Atlas V Roars to Space with Sophisticated New Missile Warning Surveillance Satellite

Blast off of sophisticated SBIRS GEO-1 satellite aboard an Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Air Force Station at 2:10 p.m. EDT on May 7, 2011. Credit: Alan Walters/awaltersphoto.com

[/caption]CAPE CANAVERAL – An Atlas V rocket carrying a highly sophisticated Space-Based Infrared System (SBIRS) GEO-1 satellite for the United States Air Force lifted off from the seaside Space Launch Complex-41 at 2:10 p.m. EDT on Saturday (May 7) into a gorgeous clear blue sky following a one day delay due to cloudy weather conditions surrounding the Florida space coast on Friday.

SBIRS GEO-1 is the maiden satellite in a new constellation of next generation military space probes that will provide US military forces with an early warning of missile launches that could pose a threat to US national security.

Atlas V rocket roars to space with SBIRS GEO-1 satellite Pad 41 at Cape Canaveral Air Force Station on May 7, 2011.
Credit: Alan Walters/awaltersphoto.com
“Today, we launched the next generation missile warning capability. It’s taken a lot of hard work by the government-industry team and we couldn’t be more proud. We look forward to this satellite providing superb capabilities for many years to come,” said General Gen. William Shelton, Air Force Space Command commander in a statement.

The planned quartet of SBIRS satellites will deliver a quantum leap in infrared event detection and reporting compared to the current generation of orbiting Defense Support Program (DSP) satellites, according to Michael Friedman of Lockheed Martin in an interview with Universe Today at the Kennedy Space Center (KSC).

“The SBIRS GEO satellites will have both a scanning and starring sensor with faster revisit rates. They will be able to detect missile launches from the earliest stages of the boost phase and track the missiles to determine their trajectory and potential impact points,” said Friedman.

“SBIRS can see targets quicker and characterize the actual missile,’” explained Steve Tatum of Lockheed Martin at KSC.

In addition to providing improved and persistent missile warning capabilities in a global arena, SBIRS will simultaneously support missile defense, technical intelligence, battlespace awareness and defense of the US homeland.

“The 10,000 pound SBIRS GEO-1 satellite is the size of two Hummers. About 9000 people in 23 states were involved in constructing the satellite.”

“SBIRS GEO-2 will launch in the next year or two,” Friedman told me.

“GEO-2 is built and undergoing testing now,” added Tatum.

The $1.2 Billion SBIRS satellite was launched into a 22,000 mile high Geosynchronous orbit by the 189 foot tall Atlas V rocket. The Atlas rocket was in the 401 vehicle configuration with no solid rocket motors and includes a 4-meter diameter payload fairing.

The first stage was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by a single Pratt & Whitney Rocketdyne RL-10A engine.

SBIRS GEO-1 satellite bolted atop Atlas V Centaur rocket at Space Launch Complex 41 prior to launch. SBIRS is housed inside a 4 meter diameter Payload Fairing. Credit: Ken Kremer

The Atlas V rocket was built and launched by United Launch Alliance (ULA). This marks the 50th successful launch for ULA since the company was formed in December 2006.

“With this launch, ULA continues to demonstrate its commitment to 100 percent mission success,” said Michael Gass, ULA President and CEO. “This milestone is a testament to the dedicated employees that for every mission deliver excellence, best value and continuous improvement to our customers.”

Read my Atlas V SBIRS preview story here:
Atlas Rocket Poised for Blast Off with Advanced Missile Early Warning Spy Satellite

SBIRS GEO-1 Launch Photo Album by the Universe Today team of Ken Kremer and Alan Walters:

Atlas V rocket and bird soar skywards at Florida Space Coast
Liftoff of Atlas V rocket with SBIRS GEO-1 satellite as an Egret flies into camera field of view on May 7, 2011 at 2:10 p.m. EDT. View from the Press Site at the Kennedy Space Center:
Credit: Ken Kremer -- kenkremer.com
Atlas V rocket soars off pad 41 with SBIRS GEO-1 satellite for the US Air Force as another bird flies into camera field of view on May 7, 2011 at 2:10 p.m. EDT. View from the Press Site at the Kennedy Space Center: Credit: Ken Kremer
Atlas V SBIRS GEO-1 launch from Cape Canaveral on May 7, 2011. Credit: Alan Walters/awaltersphoto.com
Atlas V SBIRS GEO-1 launch from Cape Canaveral on May 7, 2011. Credit: Alan Walters/awaltersphoto.com
Exhaust trail from Atlas V SBIRS GEO-1 launch on May 7, 2011. Credit: Ken Kremer
Ken Kremer with Atlas V rocket and SBIRS GEO-1 satellite at Launch Pad 41, prior to blast off from Cape Canaveral Air Force Station. Credit: Ken Kremer