SpaceX Matches ULA Single Year Launch Record with KoreaSat, Record Breaker On Tap: Photo/Video Gallery

SpaceX Falcon 9 soars to orbit with KoreaSat-5A TV comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – With the stunningly beautiful Halloween eve liftoff of the commercial KoreaSat-5A telecomsat payload from the Florida Space Coast, SpaceX matched competitor United Launch Alliance’s (ULA) single year launch record of 16 missions – and the blastoff record breaker is on tap in just 2 weeks time!

In fact several additional Falcon 9 missions are planned before the end of 2017 that could bring the year’s accumulated total to an incredible 20 or more liftoffs – if all goes well from SpaceX’s coastal launch bases in Florida and California.

Hawthorne, Ca based SpaceX tied ULA’s 16 mission record on Monday, Oct. 30, when their Falcon 9 blasted off mid-afternoon carrying the private KoreaSat-5A telecomsat mission right on time at the opening of the launch window at 3:34 p.m. EDT (1934 GMT) from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Check out the exciting gallery of SpaceX KoreaSat-5A launch imagery and videos compiled here from this author and several space media colleagues. And check back often as the gallery grows!

Liftoff of SpaceX Falcon 9 with KoreaSat-5A comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Julian Leek

ULA established their one year record of 16 missions in 2009 with the launch of NASA’s Wide-field Infrared Survey Explorer (WISE) spacecraft by a Delta II on Dec. 14, 2009.

Altogether ULA’s 2009 launch manifest included five Atlas Vs, eight Delta IIs, two Delta IVs and the first Delta IV Heavy carrying an NRO payload.

ULA is a 50:50 joint venture owned by Boeing and Lockheed Martin – now in fierce competition with SpaceX founded by billionaire and CEO Elon Musk who has won numerous commercial, government and military contracts by dramatically slashing launch costs.

Adding to the drama of SpaceX’s record breaking next Falcon 9 launch is that it’s a secret mission planned for about Nov. 15 – and its codenamed ‘Zuma’ – – but about which we know basically nothing.
To date 12 of this year’s 16 Falcon 9’s have launched from Launch Complex 39A at the Kennedy Space Center, Fl.

After lying dormant for six years, Pad 39A has been repurposed and refurbished by SpaceX from its days as a NASA shuttle launch pad.

NASA’s last space shuttle launch took place in July 2011 with the STS-135 mission to the International Space Station.

In addition to being SpaceX’s 16th launch this year, KoreaSat-5A was the 2nd one by the new space firms Falcon 9 rocket from Florida’s Spaceport in October, and the third overall in October counting another liftoff from Vandenberg AFB, Calif. – thus maintaining an absolutely torrid launch pace on the way to the record tying mission.

Monday’s mission also marks the first for a Korean satellite customer.

The nearly two ton commercial KoreaSat-5A satellite will provide Direct to Home (DTH) broadcasting, maritime, internet and other services to the North Asian region centering around South Korea.

SpaceX Falcon 9 soars to orbit with KoreaSat-5A comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

Eight and a half minutes after liftoff the 15 story tall first stage booster nailed another rocket assisted touchdown on the OCISLY droneship pre-positioned several hundred miles off shore of Cape Canaveral in the Atlantic Ocean.

Up close view of SpaceX Falcon 9 first stage landing legs in flight after liftoff of KoreaSat-5A from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Jeff Seibert

Check out this exciting video compilation from remote cameras placed around pad 39A:

Video Caption: Up Close SpaceX KoreaSat 5A launch remote camera views on Oct. 30, 2017. Credit: Jeff Seibert

Koreasat-5A was built by prime contractor, Thales Alenia Space, responsible for the design, production, testing and ground delivery. It arrived at the Florida launch base on Oct. 5 for integration with the Falcon 9 rocket.

The 3,700 kg satellite is equipped with 36 Ku-band transponders and based on Thales Alenia Space’s new-generation Spacebus 4000B2 platform. It will replace Koreasat 5.

The solar panels provide a payload power of approximately 6.5 kW. It will be positioned at 113° East and provide coverage for Indochina, Japan, Korea, the Philippines and the Middle East including Direct to Home (DTH) services.

SpaceX Falcon 9 blasts off with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Michael Kremer

To date SpaceX has accomplished 19 successful landings of a recovered Falcon 9 first stage booster by land and by sea.

The first stage from October’s SES-11 launch arrived back into Port Canaveral, FL on top of the OCISLY droneship on Oct. 15. The SES-11 comsat launched on Oct. 11.

Watch for Ken’s continuing onsite coverage of SpaceX KoreaSat-5A & SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Liftoff of SpaceX Falcon 9 with KoreaSat-5A comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Julian Leek
SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from the crawlerway. Credit: Ken Kremer/Kenkremer.com
KoreaSat-5A mission patch. Credit: SpaceX
SpaceX Falcon 9 blasts off with KoreaSat-5A comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Michael Kremer
SpaceX Falcon 9 aloft with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Michael Kremer
SpaceX Falcon 9 aloft with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Michael Kremer
SpaceX Falcon 9 soars aloft with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 soars aloft with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 soars aloft with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 arcs over accelerating to orbit leaving vapor trail in its wake carrying KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 aloft with KoreaSat-5A comsat from pad 39A at the Kennedy Space Center, FL, on 30 Oct 2017. Credit: Michael Kremer
SpaceX Falcon 9 stands erect at sunrise with KoreaSat5A DTH TV commercial comsat atop Launch Complex 39A at the Kennedy Space Center, FL, poised for Halloween eve liftoff on 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from world famous countdown clock. Credit: Ken Kremer/Kenkremer.com

Covert NRO Satellite Fades into Capes Cloudy Night Skies Shrouded in Liftoff Secrecy: Gallery – As ULA Atlas Wins Landsat Launch

Covert NROL-52 spy satellite for the National Reconnaissance Office fades into cloudy nighttime skies shrouded in secrecy after liftoff on a United Launch Alliance (ULA) Atlas V rocket at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — As one Atlas rocket carrying a covert spy satellite for the U.S. National Reconnaissance Office (NRO) to monitor Earth for national security purposes faded into cloudy nighttime skies over the Cape in the dead of night shrouded in liftoff secrecy, rocket builder United Launch Alliance (ULA) won another significant Atlas launch contract for NASA’s Landsat 9 satellite to monitor the health of Earth’s environment.

Capping two launches from two different rocket companies in four days by ULA and SpaceX followed by the arrival back in port of SpaceX’s ocean landed recovered booster, last week provided all the proof that’s needed to demonstrate that the revitalization of Florida’s Spaceport is well underway and America’s rocket makers are capturing lucrative launch contracts ensuring an upswing nationwide in rocket and spacecraft manufacturing – for critical military surveillance, government, civilian and science needs.

Check out the exciting gallery of Atlas launch imagery and videos including the thrilling droneship return of SpaceX’s 156 foot tall first stage booster back into Port Canaveral less than 4 hours after ULA delivered the classified NROL-52 surveillance satellite to a secret orbit – from this author and several space media colleagues. And check back here as the gallery grows!

A ULA Atlas V launch carrying the covert NROL-52 mission in support of U.S. national security blasted off overnight Sunday, Oct. 15 at 3:28 a.m. EDT (0728 GMT) from seaside Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.

“Congratulations to the team who helped make #NROL52 a success! United Launch Alliance, 45th Space Wing at Patrick Air Force Base, Fla., Air Force Space Command, and the Space and Missile Systems Center,” the NRO announced post launch on social media.

It was a case of ‘Going, Going, Gone’ as seemingly endless stormy weather plagued the space coast and the Atlas soon disappeared behind clouds from many but not all vantage points, as the two stage rocket was finally cleared to launch on its fifth try. Postponed three times by poor weather and once due to a technical glitch to fix a faulty second stage transmitter.

Reflecting in a pond a United Launch Alliance (ULA) Atlas V rocket blasts off with the covert NROL-52 spy satellite for the National Reconnaissance Office at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The launches were postponed by the downstream impact of Hurricane Irma which forced the base closings of the Kennedy Space Center and Cape Canaveral Air Force Station and significantly impacted the Florida Space Coast region by causing over $100 million in damage to buildings, homes, businesses, hotels, restaurants, infrastructure and more due to flooding and hurricane force winds.

“We’ve had an incredible month,” said Brig. Gen. Wayne R. Monteith, Commander, 45th Space Wing.

“Not only did we restore our base to full mission capable status just a few hours after Hurricane Irma impacted our coast, but we’ve successfully launched two rockets in less than four days just weeks later.”

Covert NROL-52 spy satellite for the National Reconnaissance Office fades into cloudy nighttime skies shrouded in secrecy after liftoff on a United Launch Alliance (ULA) Atlas V rocket at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

“The 45th Space Wing supported ULA’s Atlas V launch of the NROL-52 mission for the National Reconnaissance Office early morning on Oct. 15!”

“The men and women of the 45th Space Wing continue to make the impossible possible.”

Reflecting in a pond a United Launch Alliance (ULA) Atlas V rocket blasts off with the covert NROL-52 spy satellite for the National Reconnaissance Office at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

More than a quarter of all the world’s rocket launches take place from Florida’s burgeoning spaceports.

Covert NROL-52 spy satellite for the National Reconnaissance Office fades into cloudy nighttime skies shrouded in secrecy after liftoff on a United Launch Alliance (ULA) Atlas V rocket at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

“Our team’s resiliency and tireless efforts in launching over 25% of all world-wide launches this year proves why we are the ‘World’s Premier Gateway to Space,’” Montieth gushed in pride.

Meanwhile, NASA selected ULA to provide launch services for the Landsat 9 mission with another Atlas V rocket as soon as late 2020.

“The mission is currently targeted for a contract launch date of June 2021, while protecting for the ability to launch as early as December 2020, on an Atlas V 401 rocket from Space Launch Complex 3E at Vandenberg Air Force Base in California,” said NASA.

The Landsat 9 launch contract is worth $153.8 million.

Landsat 9 is a joint mission between NASA and the U.S. Geological Survey (USGS).

“Landsat 9 will continue the Landsat program’s critical role in monitoring, understanding, and managing the land resources needed to sustain human life.”

“We are honored that NASA has entrusted ULA with launching this critical land imaging satellite,” said Tory Bruno, ULA’s president and chief executive, in a statement.

“ULA’s world-leading performance and reliability, paired with the tremendous heritage of 74 consecutive successful Atlas V launches, provides the optimal value for our customer. We look forward to working together again with our mission partners at NASA’s Launch Services Program, Goddard Space Flight Center and the U.S. Geological Survey in the integration and launch of this significant mission, contributing to the international strategy for examining the health and state of the Earth.”

ULA Atlas V rocket streaks to orbit in this long duration exposure carrying covert NROL-52 payload for the NRO after lift off from Space Launch Complex-41 on Oct. 15, 2017 at 3:28 a.m. EDT at Cape Canaveral Air Force Station in Florida. Credit: Jeff Seibert

NROL-52 is the fourth of five launches slated for the NRO in 2017 by both ULA and SpaceX.

“Never before has innovation been more important for keeping us ahead of the game. As the eagle soars, so will the advanced capabilities this payload provides to our national security,” said Colonel Matthew Skeen, USAF, Director, NRO Office of Space Launch, in a statement. “Kudos to the entire team for a job well done.”

Check out this exciting video compilation from remote cameras circling the Atlas pad 41.

Video Caption: Launch of the NROL-52 satellite on an Atlas 5 booster from Pad 41. A United Launch Alliance Atlas 5 421 rocket launches the NROL-52 payload on Oct. 15, 2017 at 328 a.m. EDT on the 5th launch attempt. Previous launch attempts were halted by weather issues 3 times, and a faulty telemetry radio that needed to be replaced after the rocket was rolled back to the Pad 41 Vertical Integration Facility. Credit Jeff Seibert

The venerable two stage Atlas V stands 194 feet tall and sports a 100% success record. The first stage generates approx. 1.6 million pounds of liftoff thrust.

This Atlas Evolved Expendable Launch Vehicle (EELV) mission launched in the 421 configuration vehicle, which includes a 4-meter payload fairing (PLF) encapsulating the payload and two strap on solid rocket first stage boosters.

The Atlas first stage booster for this mission was powered by the Russian-built RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The dual chamber, dual-nozzle RD-180 is fueled by a mixture of RP-1 kerosene and LOX (liquid oxygen).

The ULA Atlas V first stage powers NROL-52 spy satellite to orbit for the NRO firing the dual chamber, dual-nozzle RD-180 engines after blastoff at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The next NRO launch is scheduled on a ULA Delta IV in December from Vandenberg Air Force Base, California.

Reflecting in a pond a United Launch Alliance (ULA) Atlas V rocket blasts off with the covert NROL-52 spy satellite for the National Reconnaissance Office at 3:28 a.m. EDT on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NROL-52, SpaceX SES-11 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Liftoff of ULA Atlas V rocket carrying classified NROL-52 payload for the NRO on Oct. 15, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Julian Leek
United Launch Alliance (ULA) Atlas V rocket streaks to orbit in this long duration exposure carrying covert NROL-52 payload for the National Reconnaissance Office after lift off from Space Launch Complex-41 on Oct. 15, 2017 at 3:28 a.m. EDT at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Reflecting in a pond a ULA Atlas V rocket stands poised for launch with the NROL-52 surveillance satellite for the National Reconnaissance Office prior to blastoff on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Reflown SpaceX Falcon 9 first stage booster arrives at sunrise atop OCISLY droneship being towed into the mouth of Port Canaveral, FL on Oct. 15, 2017 after successfully launch SES-11 UHDTV comsat to orbit on Oct. 11, 2017. Credit: Ken Kremer/Kenkremer.com
ULA Atlas V rocket blasts off carrying covert NROL-52 payload for the NRO from Space Launch Complex-41 on Oct. 15, 2017 at 3:28 a.m. EDT at Cape Canaveral Air Force Station in Florida. Credit: Jeff Seibert

Clandestine Black Ops NRO Satellite Launches into the Black over Florida Spaceport Skies on ULA Atlas V on 5th Try

United Launch Alliance (ULA) Atlas V rocket streaks to orbit in this long duration exposure carrying covert NROL-52 payload for the National Reconnaissance Office after lift off from Space Launch Complex-41 on Oct. 15, 2017 at 3:28 a.m. EDT at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A clandestine black ops satellite supporting US national defense launched into the black skies over Florida’s spaceport in the dead of night Sunday, Oct. 15, on a mission for the U.S. governments National Reconnaissance Office (NRO) that lit up the night skies offering a spectacular vista on its journey to orbit.

A United Launch Alliance (ULA) Atlas V launch carrying the covert NROL-52 mission in support of U.S. national security blasted off early Sunday, Oct. 15 at 3:28 a.m. EDT (0728 GMT) from seaside Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.

“Congratulations to the team who helped make #NROL52 a success! United Launch Alliance, 45th Space Wing at Patrick Air Force Base, Fla., Air Force Space Command, and the Space and Missile Systems Center,” the NRO announced post launch on social media.

“Thanks. It was our privilege to serve your mission,” tweeted ULA CEO Tory Bruno in reply.

“Today’s launch is a testament to the tireless dedication of the ULA team, demonstrating why ULA continues to serve as our nation’s most dependable and successful launch provider,” said Laura Maginnis, ULA vice president of Government Satellite Launch, in a statement.

A United Launch Alliance (ULA) Atlas V rocket carrying the classified NROL-52 payload for the National Reconnaissance Office in support of national security lifted off from Space Launch Complex-41 on Oct. 15, 2017 at 3:28 a.m. EDT at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The Atlas V hauling NROL-52 soon arced over eastwards as it accelerate skywards to deliver the covert satellite to geosynchronous transfer orbit.

As the goals of the secret satellite mission were completely clouded from view perhaps it’s somewhat fitting that overhead clouds furtively rolled in as launch time approached and partially obscured our view – which nevertheless was magnificent!

The Atlas V thundered off pad 41 right at the opening of the middle of the night launch window providing absolutely stunning views to spectators ringing the space coast region as it steaked to orbit – darting in and out of the surprisingly thick cloud layer and affording witnesses who wisely woke up a spectacle they won’t forget.

The top secret payload literally launched into the black. Several minutes after liftoff ULA’s live launch webcast coverage entered a communications blackout.

“At the request of our [NRO] customer, we will wrap up our live #AtlasV #NROL52 [coverage],” said ULA.

Liftoff of ULA Atlas V rocket carrying classified NROL-52 payload for the NRO on Oct. 15, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

“Never before has innovation been more important for keeping us ahead of the game. As the eagle soars, so will the advanced capabilities this payload provides to our national security,” said Colonel Matthew Skeen, USAF, Director, NRO Office of Space Launch, in a statement. “Kudos to the entire team for a job well done.”

“It’s always a good day when our nation launches an NRO payload that provides vital information to help keep our nation strong and protect us from enemies who wish to do us harm.

A United Launch Alliance (ULA) Atlas V rocket carrying the classified NROL-52 payload for the National Reconnaissance Office in support of national security lifted off from Space Launch Complex-41 on Oct. 15, 2017 at 3:28 a.m. EDT at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The fifth time was finally the charm for the oft postponed launch that initially was delayed from late September into early October by the impact of Hurricane Irma on the Florida Space Coast that caused over $100 million in damage to homes, businesses, marinas, parks and more in Brevard county.

The NROL-52 launch attempt was then scrubbed 4 more times due to lingering awful bouts of rains squalls and threating high winds and even a technical glitch with the S-band transmitter on the second stage of the ULA Atlas V rocket.

Fixing the transmitter required that the Atlas rocket be rolled back off the launch pad and into the Vertical Integration Facility (VIF) at pad 41 to replace the faulty equipment and verify its reliable operation.

“After recovering from Hurricane Irma that came through the area last month, and the last week’s weather challenges, the team found the right opportunity today to deliver this critical national asset to orbit,” Maginnis stated.

The ULA Atlas V launch of NROL-52 for the U.S. governments National Reconnaissance Office (NRO) concluded a launch double header this week on the Florida Space Coast that began with the sunset launch of a SpaceX Falcon 9 of the SES-11 commercial satellite on Wednesday, Oct 11. The Falcon 9 first stage soft landed minutes later on an ocean going platform.

The venerable two stage Atlas V stands 194 feet tall and sports a 100% success record. The first stage generates approx. 1.6 million pounds of liftoff thrust.

This Atlas Evolved Expendable Launch Vehicle (EELV) mission launched in the 421 configuration vehicle, which includes a 4-meter payload fairing (PLF) and two strap on solid rocket first stage boosters.

The Atlas booster for this mission was powered by the Russian-built RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The National Reconnaissance Office (NRO) is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation.

The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

NROL-52 was launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

This marks the 6th and final Atlas V launch of the year.

The NROL-52 mission marks ULA’s seventh launch of 2017 and 26th for the National Reconnaissance Office.

NROL-52 is the 74th flight of the Atlas V rocket and the seventh in the 421 configuration.

“I want to thank the entire ULA team and our mission partners at the NRO and U.S. Air Force who made this, our 26th NRO launch, successful,” said Maginnis.

Up close view of payload fairing encapsulating NROL-52 spysat for the National Reconnaissance Office atop ULA Atlas V rocket. Liftoff is slated for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

NROL-52 is the fourth of five launches slated for the NRO in 2017 by both ULA and SpaceX.

The next NRO launch is scheduled on a ULA Delta IV in December from Vandenberg Air Force Base, California.

Reflecting in a pond a ULA Atlas V rocket stands poised for launch with the NROL-52 surveillance satellite for the National Reconnaissance Office prior to blastoff on Oct. 15, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NROL-52, SpaceX SES-11 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

ULA Atlas V rocket will deliver the classified NROL-52 spysat to orbit for the National Reconnaissance Office. Liftoff targeted for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
The NROL-52 mission patch depicts an eagle bursting through a red, white and blue shield as a representation of the agency’s resolve to breaking through barriers in pursuit of innovative technologies and capabilities. Credit: NRO
NROL-52 poster. Credit: NRO/ULA

NRO Spysat Set to Kick Off Florida Space Coast Launch Double Header Overnight Oct. 5 on ULA Atlas V: Watch Live

A ULA Atlas V rocket carrying the NROL-52 mission for the National Reconnaissance Office stands poised for launch. Liftoff is slated for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A classified spy satellite for the U.S. governments National Reconnaissance Office (NRO) is set to kick of a launch double header this week on the Florida Space Coast with what should be a majestic overnight liftoff Thursday, Oct. 5, of a United Launch Alliance (ULA) Atlas V. UPDATE: Rain delay to Fri 10/6 at 403 AM EDT. Reset to 10/7 at 339 AM EDT

A SpaceX Falcon 9 will follow up at dinnertime Saturday, Oct. 7 with a commercial satellite launch if all goes well and the currently unsettled and rainy weather clears out in time.

A ULA Atlas V launch carrying the NROL-52 mission in support of national security is targeted for blastoff Thursday at 4:07 a.m. EDT (0807 GMT) from seaside Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.

The venerable two stage Atlas V stands 194 feet tall and sports a 100% success record. The first stage will generate approx. 1.6 million pounds of liftoff thrust.

The nighttime liftoff should look absolutely stunning affording space coast region witnesses a spectacle they won’t forget. If it’s not obscured by clouds the launch should be visible for many dozens and dozens of miles away.

Up close view of payload fairing encapsulating NROL-52 spysat for the National Reconnaissance Office atop ULA Atlas V rocket. Liftoff is slated for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Over the past week the region has seen torrential downpours off and on and many areas have been sporadically flooded.

New temporary lakes have even appeared at pad 41 as I saw during our media visit to set up remote launch cameras today.

A ULA Atlas V rocket carrying the NROL-52 mission for the National Reconnaissance Office stands poised for launch. Liftoff is slated for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

So for space and rocket enthusiasts that’s 2 launches in just over 2 days this week and more than enough reason to come on over.

Both launches were postponed several days in the aftermath of Hurricane Irma which walloped the Kennedy Space Center and Cape Canaveral Air Force Station launch base in early September – shortly after the SpaceX Falcon 9 blasted off with the US Air Force X-37B military mini-shuttle on Sept. 7 from the Kennedy Space Center.

You can watch the Atlas V rocket launch live via a ULA webcast at – www.ulalaunch.com and www.youtube.com/unitedlaunchalliance

The ULA program starts at 3:47 a.m. ET.

The launch window extends for an hour until 5:07 a.m. ET.

In the event of delay for any reason, the next launch opportunity is Friday, Oct 6. The launch time opens several minutes earlier on Friday.

The rocket was rolled out to the pad this morning.

ULA Atlas V rocket will deliver the classified NROL-52 spysat to orbit for the National Reconnaissance Office. Liftoff targeted for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The weather looks iffy at this time with a 60% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Oct 5 are for Cumulus Clouds and Ground Winds.

The odds drop to 30% favorable for the 24 hour scrub turnaround day on Oct. 6.

This is ULA’s second NRO launch using an Atlas V rocket in the past two weeks. NROL-42 launched from Vandenberg AFB, Ca. on September 24, 2017.

Unlike most classified launches the launch time for the NROL-52 payload has been announced ahead of time.

Otherwise virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret and it is certainly vital to America’s national security.

The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

NROL-52 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

This ULA video profiles the NROL-52 launch:

The Atlas V will launch in the 421 configuration. The first stage is powered by the Russian made RD-180 engines and is augmented with two solid rocket boosters. The payload fairing is 4 meters (13.1 feet) in diameter and the upper stage is powered by a single-engine Centaur.

This marks the 6th and final Atlas V launch of the year.

The NROL-52 mission will mark ULA’s seventh launch of 2017 and 26th for the National Reconnaissance Office.

NROL-52 will be the 74th flight of the Atlas V rocket and the seventh in the 421 configuration.


ULA Atlas V rocket will deliver the classified NROL-52 spysat to orbit for the National Reconnaissance Office. Liftoff targeted for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NROL-52, SpaceX SES-11 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming ULA Atlas NRO NROL-52 spysat launch on Oct 5 and SpaceX Falcon 9 SES-11 launch on Oct 7, JWST, OSIRIS-REx, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Oct 4-6, 8: “ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

ULA Atlas V rocket will deliver the classified NROL-52 spysat to orbit for the National Reconnaissance Office. Liftoff targeted for 4:07 a.m. ET, Oct. 5, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
NROL-52 poster. Credit: NRO/ULA

NASA’s OSIRIS-REx Captures Lovely Blue Marble during Gravity Assist Swing-by to Asteroid Bennu

A color composite image of Earth taken on Sept. 22, 2017 by the MapCam camera on NASA’s OSIRIS-REx spacecraft just hours after the spacecraft completed its Earth Gravity Assist at a range of approximately 106,000 miles (170,000 kilometers). Credit: NASA/Goddard/University of Arizona

KENNEDY SPACE CENTER, FL – NASA’s OSIRIS-REx asteroid mission captured a lovely ‘Blue Marble’ image of our Home Planet during last Fridays (Sept. 22) successful gravity assist swing-by sending the probe hurtling towards asteroid Bennu for a rendezvous next August on a round trip journey to snatch pristine soil samples.

The newly released color composite image of Earth was taken on Sept. 22 by the spacecrafts MapCam camera.

It was taken at a range of approximately 106,000 miles (170,000 kilometers), just a few hours after OSIRIS-REx completed its critical Earth Gravity Assist (EGA) maneuver.

“NASA’s asteroid sample return spacecraft successfully used Earth’s gravity on Friday, Sept. 22 to slingshot itself on a path toward the asteroid Bennu, for a rendezvous next August,” the agency confirmed after receiving the eagerly awaited telemetry.

OSIRIS-Rex, which stands for Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer, is NASA’s first ever asteroid sample return mission.

As it swung by Earth at 12:52 p.m. EDT on Sept. 22, OSIRIS-REx passed only 10,711 miles (17,237 km) above Antarctica, just south of Cape Horn, Chile.

The probe departed Earth by following a flight path that continued north over the Pacific Ocean and has already travelled 600 million miles (1 billion kilometers) since launching on Sept. 8, 2016.

OSIRIS-REx flight path over Earth’s surface during the Sept. 22, 2017 slingshot over Antarctica at 12:52 a.m. EDT targeting the probe to Asteroid Bennu in August 2018. Credits: NASA’s Goddard Space Flight Center/University of Arizona

The preplanned EGA maneuver provided the absolutely essential gravity assisted speed boost required for OSIRIS-Rex to gain enough velocity to complete its journey to the carbon rich asteroid Bennu and back.

The mission was only made possible by the slingshot which provided a velocity change to the spacecraft of 8,451 miles per hour (3.778 kilometers per second).

“The encounter with Earth is fundamental to our rendezvous with Bennu,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“The total velocity change from Earth’s gravity far exceeds the total fuel load of the OSIRIS-REx propulsion system, so we are really leveraging our Earth flyby to make a massive change to the OSIRIS-REx trajectory, specifically changing the tilt of the orbit to match Bennu.”

The spacecraft conducted a post flyby science campaign by collecting images and science observations of Earth and the Moon that began four hours after closest approach in order to test and calibrate its onboard suite of five science instruments and help prepare them for OSIRIS-REx’s arrival at Bennu in late 2018.

NASA’s OSIRIS-REx spacecraft OTES spectrometer captured these infrared spectral curves during Earth Gravity Assist on Sept. 22 2017, hours after the spacecraft’s closest approach. Credit: NASA/Goddard/University of Arizona/Arizona State University

The MapCam camera Blue Marble image is the first one to be released by NASA and the science team.

The image is centered on the Pacific Ocean and shows several familiar landmasses, including Australia in the lower left, and Baja California and the southwestern United States in the upper right.

“The dark vertical streaks at the top of the image are caused by short exposure times (less than three milliseconds),” said the team.

“Short exposure times are required for imaging an object as bright as Earth, but are not anticipated for an object as dark as the asteroid Bennu, which the camera was designed to image.”

The instrument will gather additional data and measurements scanning the Earth and the Moon for three more days over the next two weeks.

“The opportunity to collect science data over the next two weeks provides the OSIRIS-REx mission team with an excellent opportunity to practice for operations at Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.

“During the Earth flyby, the science and operations teams are co-located, performing daily activities together as they will during the asteroid encounter.”

A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com

The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Everything with the launch and flyby went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.

OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

NASA’s OSIRIS-REx spacecraft OVIRS spectrometer captured this visible and infrared spectral curve, which shows the amount of sunlight reflected from the Earth, after the spacecraft’s Earth Gravity Assist on Sept. 22, 2017. Credit: NASA/Goddard/University of Arizona

NASA’s OSIRIS-REx Asteroid Sampler Slingshots Around Earth Friday, Sept. 22 – Catch It If You Can!

Artist’s concept shows the OSIRIS-REx spacecraft passing by Earth on Sept. 22, 2017. Credits: NASA’s Goddard Space Flight Center/University of Arizona

KENNEDY SPACE CENTER, FL – Barely a year after NASA’s OSIRIS-REx robotic asteroid sampler launched on a trailblazing mission to snatch a soil sample from a pristine asteroid and return it to Earth for research analysis, the probe is speeding back home for a swift slingshot around our home planet on Friday Sept. 22 to gain a gravity assist speed boost required to complete its journey to the carbon rich asteroid Bennu and back.

As it swings by Earth NASA’s first ever asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), will pass only 11,000 miles (17,000 kilometers) above Earth just before 12:52 p.m. EDT on Friday.

And NASA is asking the public to try and ‘Catch It If You Can’ – by waving hello and/or taking snapshots during and after the probes high speed flyby.

Plus you can watch NASA Facebook Live event at Noon Friday: https://www.facebook.com/NASAGoddard/

OSIRIS-REx will be approaching Earth at a velocity of about 19,000 mph on Friday as it begins flying over Australia during the Earth Gravity Assist (EGA) maneuver.

Since blastoff from the Florida Space Coast on Sept. 8, 2016 the probe has already racked up almost 600 million miles on its round trip journey from Earth and back to set up Friday’s critical gravity assist maneuver to Bennu and back.

As OSIRIS-REx continues along its flight path the spacecraft will reach its closest point to Earth over Antarctica, just south of Cape Horn, Chile. It will gain a velocity boost of about 8400 mph.

The spacecraft will also conduct a post flyby science campaign by collecting images and science observations of Earth and the Moon four hours after closest approach to calibrate its five science instruments.

NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The allure of Bennu is that it is a carbon rich asteroid – thus OSIRIS-REx could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview with the spacecraft in the cleanroom at NASA’s Kennedy Space Center.

The do or die gravity assist plunge is absolutely essential to set OSIRIS-REx on course to match the asteroid’s path and speed when it reaches the vicinity of asteroid Bennu a year from now in October 2018.

“The Earth Gravity Assist is a clever way to move the spacecraft onto Bennu’s orbital plane using Earth’s own gravity instead of expending fuel,” says Lauretta, of the University of Arizona, Tucson.

Just how close to Earth will OSIRIS-REx be during its flyby on Friday? The spacecraft will come within 11,000 miles (17,000 km) of the Earth’s surface as it passes over Antarctica at 12:52 a.m. EDT. on Sept. 22, 2017. Credits: NASA’s Goddard Space Flight Center/University of Arizona

Bennu’s orbit around the Sun is tilted at a six-degree inclination with respect to Earth’s orbital plane.

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

Numerous NASA spacecraft – including NASA’s just completed Cassini mission to Saturn – utilize gravity assists around a variety of celestial bodies to gain speed and change course to save vast amounts of propellant and time in order to accomplish science missions and visit additional target objects that would otherwise be impossible.

The flyby will be a nail-biting time for NASA and the science team because right afterwards the refrigerator sized probe will be out of contact with engineers – unable to receive telemetry for about an hour.

“For about an hour, NASA will be out of contact with the spacecraft as it passes over Antarctica,” said Mike Moreau, the flight dynamics system lead at Goddard, in a statement.

“OSIRIS-REx uses the Deep Space Network to communicate with Earth, and the spacecraft will be too low relative to the southern horizon to be in view with either the Deep Space tracking station at Canberra, Australia, or Goldstone, California.”

NASA says the team will regain communication with OSIRIS-REx roughly 50 minutes after closest approach over Antarctica at about 1:40 p.m. EDT.

The post flyby science campaign is set to begin at 4:52 p.m. EDT, Friday, Sept. 22.

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com

The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Everything with the launch went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu,” OSIRIS-Rex Principal Investigator Dante Lauretta told me in the prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final launch preparations.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

1 day to Earth flyby for OSIRIS-Rex

NASA and the mission team is also inviting the public to get engaged by participating in the Wave to OSIRIS-REx social media campaign.

“Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).

Participants may begin taking and sharing photos at any time—or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52p.m. EDT on Friday, Sept. 22.”

The probe’s flight path during the flyby will pass through the ring of numerous satellites orbiting in geosynchronous orbit, but none are expected to be within close range.

Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right, NASA Planetary Science Director Jim Green is center, 5th from left. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com

KSC and Visitor Complex Reopen in Aftermath of Hurricane Irma; with Launches Delayed and Viewing Spots Destroyed: Gallery

Rotary Rover Front park along the Indian River lagoon in Titusville, FL which offered a magnificent view of the iconic Vehicle Assembly Building and launches from Launch Complex 39A on NASA’s Kennedy Space Center Credit: Ken Kremer/kenkremer.com

TITUSVILLE/CAPE CANAVERAL, FL – NASA’s Kennedy Space Center, the KSC Visitor Complex and Cape Canaveral Air Force Station have reopened as of today (Sept. 16) and yesterday, respectively, in the aftermath of Cat 1 hurricane force winds from Hurricane Irma that lashed the Florida Space Coast on Saturday, Sunday and Monday (Sept. 9/10/11) – forcing launch delays and leaving damaged and destroyed homes, buildings, infrastructure and launch viewing locations in its wake – see photos.

Cape Canaveral Air Force Station military forces partially reopened certain critical runways hours after Irma swept by the space coast to assist in emergency recovery operations.

“Kennedy Space Center will resume normal operations Saturday, Sept. 16,” NASA announced. “The “All Clear” has been given to reopen.”

NASA’s world famous Vehicle Assembly Building and the Space Coast launch pads are still standing – as seen in photos from myself and more from NASA.

Launch Complex 39 and surrounding areas are seen during an aerial survey of NASA’s Kennedy Space Center in Florida on Sept. 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on Sept. 10, 2017. Credit: NASA KSC

“As you’ve all seen by now, the Center will be open for normal operations at midnight tonight, and we’ll be ready to get back into the full swing of things Monday morning,” KSC Center Director Bob Cabana said in a message to employees.

Hurricane Irma knocked out water and power to KSC, the Cape, the visitor complex and the barrier islands including Merritt Island which is home to America’s premier Spaceport.

Wind speeds at KSC “varied from 67-94 mph (59-82 knots) at the 54-foot level to 90-116 mph (79-101 knots) at the 458-foot level during the storm.”

As a direct result of Irma, the next Space Coast launches of a United Launch Alliance Atlas V and SpaceX Falcon 9 has been postponed into October.

“The storm did delay the next launches,” said Brig. Gen. Wayne R. Monteith, Commander, 45th Space Wing, at a media briefing.

“We think the next launch will be approximately the first week of October.”

However although there was damage to a numerous buildings, both the spacecraft and rockets are safe and sound.

“The spacecraft we have on station right now are healthy and are being monitored.”

“The seven rocket boosters [Atlas, Falcon, Delta IV Heavy] we have on the Cape rode out the storm just fine,” Montieth elaborated.

The base and the visitor complex both lacked potable water service used for drinking, food preparation and cleaning.

Multiple water pipes in the nearby community of Cocoa were severed. KSC, the Cape and the Visitor Center as well as the surrounding community were under a boil water restriction for several days.

“Full water service is now available and the center has received an all clear following several days of closure related to Hurricane Irma,” noted KSC officials.

Space View park along the Indian River lagoon in Titusville, FL which offered a magnificent view of the iconic Vehicle Assembly Building and launches from Launch Complex 39A on NASA’s Kennedy Space Center was destroyed by Hurricane Irma on Sept. 10/11, 2017. Credit: Ken Kremer/kenkremer.com

Indeed over 87% of customers lost power in Brevard County – home to the Florida Space Coast. Over 2/3 of customers lost power throughout Florida- impacting over 16 million people.

A number of popular public launch viewing locations were also severely damaged or destroyed as I witnessed personally driving in Titusville around just hours after Irma fled north.

See my photos from Rotary River Front Park, Space View Park and others along Rt. 1 in Titusville – which had offered unimpeded, spectacular and beautiful views across the Indian Rover lagoon to the KSC and Cape Canaveral launch pads.

Space View park along the Indian River lagoon in Titusville, FL offered a magnificent view of the iconic Vehicle Assembly Building and launches from Launch Complex 39A on NASA’s Kennedy Space Center until the piers and walkways were decimated by Hurricane Irma on Sept. 10/11, 2017. Credit: Ken Kremer/kenkremer.com

Piers, docks, walkways, parking areas, piping and more were ripped up, smashed, sunken and devastated with piles of metal, bricks, wood, trees, bushes, trash and more scattered about in sad and unrecognizable heaps.

Space View park along the Indian River lagoon in Titusville, FL offered a magnificent view of the iconic Vehicle Assembly Building and launches from Launch Complex 39A on NASA’s Kennedy Space Center until the piers and walkway were decimated by Hurricane Irma on Sept. 10/11, 2017. Credit: Ken Kremer/kenkremer.com

From a distance of several miles, the iconic VAB and the launch pads themselves did not seem to suffer obvious destruction – see my photos herein.

As of today over 500,000 customers across Florida remain without power, including tens of thousands in central Florida.

Numerous traffic lights in Titusville, Cape Canaveral, Cocoa Beach and Melbourne and other Brevard County and central Florida cities and communities are still not functioning today – creating all sorts of road traffic hazards!

Rotary Rover Front park along the Indian River lagoon in Titusville, FL was devastated by Hurricane Irma on Sept. 10/11, 2017. The serene coastal park had offered magnificent views of the iconic Vehicle Assembly Building and launches from Launch Complex 39A on NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Damage assessment teams from NASA, ULA, SpaceX, the USAF and contractors are now carefully scrutinizing every aspect of the Space Coast launch pads and facilities to ensure successful liftoffs whenever they resume in a few weeks.

Virtually all traffic lights were not operating and businesses and gas stations were closed in the hours before and after Irma pummeled communities across the space coast and central Florida. There were very long lines at the first gas stations that did reopen on Monday and Tuesday.

NASA’s iconic Vehicle Assembly Building (VAB) and the Launch Control Center (left) were home to the ‘ride-out’ crew remaining on site at the Kennedy Space Center, FL during Hurricane Irma to monitor facilities as the storm passed by on Sept. 10/11. They survived intact in this post storm view taken from Playalinda Beach. Credit: Ken Kremer/kenkremer.com

KSC was closed and evacuated of all personnel during the storm, except for only a small ‘Ride-out’ team of roughly 130 or so KSC personnel based inside the Emergency Operations Center (EOC) inside the Launch Control Center. They remained on site to monitor spaceport facilities.

“I want to take this opportunity to thank—and commend—the Ride-out and Damage Assessment and Recovery Teams for the outstanding job they did watching over the Center in our absence and getting it ready for our return in the aftermath of Hurricane Irma,” Cabana added. “I also want to thank all of you for the outstanding job that you did in getting the Center ready for the hurricane. As a result of your efforts, the Center was well prepared for the storm.”

The Damage Assessment and Recovery Teams explained that “the industrial and Launch Complex 39 areas have been inspected and are safe for personnel to return to work. This includes the KSC Child Development Center and all administrative work areas.”

Huge slabs of coastal concrete walkway buckled and collapsed on Route 1 along the Indian River lagoon in Titusville, FL that was a popular spot offering outstanding public launch viewing – decimated as Hurricane Irma passed by on Sept. 10/11, 2017. Credit: Ken Kremer/kenkremer.com

“All facility systems including communication, power, and air conditioning are functional.”

Montieth confirmed damage to many buildings.

“In an initial assessment of the Cape facilities, about 40 % of buildings we inspected so far have received some damage. So 107 of 216 buildings at the Cape inspected have already been identified with damage.

Launch Complex 39 and surrounding areas are seen during an aerial survey of NASA’s Kennedy Space Center in Florida on Sept. 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on Sept. 10, 2017. KSC reopens on Sept. 10, 2017. Credit: NASA KSC

“Lots of roof and siding damage, Montieth explained on Sept. 13. “We haven’t inspected the beaches yet.

“We have water issues at the Cape. We need water for the chillers to cool the operational buildings.”
Luckily the damage from Irma was less than feared.

“Under Hurricane Matthew there was about $50 million worth of damage between us and our launch partners. We think it will be less this time for Irma but we have a lot more work to do,” noted Montieth.

“The storm wasn’t as bad as expected. You hope for the best and prepare for the worst and that’s what we did. We had a ride-out team on base in a secure facility. Irma traveling over land helped us out. But we still got hit here by over 90 MPH winds gusts and over 58 mph winds – which are hurricane category 1 winds.”

“We also got hit by what we believe are 3 probable small tornadoes that hit the base. That claim is up to the NWS.”

He noted that the X-37B was launched successfully last Friday by SpaceX and that ongoing hurricane preparations and evacuations went to full swing right afterward the morning blastoff.

USAF X-37B military spaceplane blasts off with picturesque water reflections at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Derelict boat crashed up on shore along the Indian River lagoon in Titusville, FL right after Hurricane Irma pounded the Space Coast on Sept. 10/11, 2017. Credit: Ken Kremer/kenkremer.com
Thrashing waves and winds from Hurricane Irma nearly washed away the roadway past the Max Brewer Bridge, Titusville leading to Playalinda Beach on Sept. 10/11, 2017. Water levels were several feet above normal hours after the storm passed. Credit: Ken Kremer/kenkremer.com
Rotary Rover Front park along the Indian River lagoon in Titusville, FL which offered a magnificent view of the iconic Vehicle Assembly Building and launches from Launch Complex 39A on NASA’s Kennedy Space Center was destroyed by Hurricane Irma on Sept. 10/11, 2017. Credit: Ken Kremer/kenkremer.com
Launch Complex 39A and SpaceX processing hangar at NASA’s Kennedy Space Center survived intact after Hurricane Irma swept by on Sept. 10/11, 2017 in this post storm view taken from Playalinda Beach. Credit: Ken Kremer/kenkremer.com
Launch Complex 39B at NASA’s Kennedy Space Center survived intact after Hurricane Irma swept by on Sept. 10/11, 2017 in this post storm view taken from Playalinda Beach. Credit: Ken Kremer/kenkremer.com

Secret X-37B Military Mini-Shuttle Set for SpaceX Blastoff/Landing Sept. 7 as Cat 5 Hurricane Irma Forces Florida State of Emergency – Watch Live

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Although its far from sunny in the so called ‘Sunshine State’ the secret X-37B military mini-shuttle is set for a SpaceX blastoff and booster landing combo Thursday, Sept. 7 – even as the looming threat from Cat 5 Hurricane Irma forced Florida’s Governor to declare a statewide ‘State of Emergency.’

Launch preparations were in full swing today on Florida’s Space Coast for liftoff of the hi tech USAF X-37B reusable spaceplane- hoping to escape to orbit for the first time atop a SpaceX Falcon 9 rocket and just in the nick of time tomorrow, before the impending threat of monster storm Irma potentially lashes the launch pad at NASA’s Kennedy Space Center in the center of the states long peninsula.

Hurricane Irma Cone forecast on Sept 7, 2017 from the National Hurricane Center. Credit: NHC

Irma is packing winds of 185 mph and one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

I witnessed the entire SpaceX Falcon 9 rocket and payload stack being rolled horizontally up the incline to the top of Launch Complex 39A late this afternoon, Sept. 6, during our media visit for up-close camera setup.

Up close head on view of SpaceX Falcon 9 rocket rolling horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Rather remarkably the relatively dismal weather forecast has brightened considerably in the final hours leading to Thursday’s scheduled launch and the forecast heavy rain showers and thunder have dissipated in the time remaining between now and liftoff.

The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall.

Up close side view of SpaceX Falcon 9 rocket and nose cone housing the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

The path to launch was cleared following the successful engine test firing of the Falcon 9 first stage I witnessed late last week, Thursday afternoon, Aug. 30.

During the hold down static fire test all nine Merlin 9 stage engine were ignited and fired up to full throttle for several seconds. See my static fire story here.

SpaceX conducts successful static fire test of the Falcon 9 first stage rocket at 4:30 p.m. EDT on Aug. 31, 2017 on Launch Complex 39A on NASA’s Kennedy Space Center, Fl., as seen from nearby Playalinda causeway. Liftoff of the USAF X-37B OTV-5 mini-shuttle mission is scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Although the exact launch time remains a closely guarded U.S. Air Force secret, liftoff of the X-37B is slated to occur sometime during a 5 hour long window.

The launch window for the X-37B on the OTV-5 mission opens at 9:50 a.m. EDT (13:50 UTC) and spans until 2:55 p.m. EDT (18:55 UTC) Sept. 7 from seaside Launch Complex 39A on NASA’s Kennedy Space Center.

SpaceX will offer their own live webcast beginning approximately 15 minutes before launch starting at about 9:35 a.m. EDT.

You can watch the launch live at NASA TV at the SpaceX hosted Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is Friday, Sept 8 at approximately the same time and window.

However amidst the heavy duty Hurricane Irma preparations all around, nothing is certain. Local area schools in Brevard County have closed and local residents are preparing their homes and apartments to hunker down, buying food and essentials putting up storm shutters, topping off gas and energy supplies and more.

“If for any reason we cannot launch tomorrow we will reevaluate whether or not we can still support another attempt on Friday, said Wayne R. Monteith, Brig Gen, USAF, Commander, 45th Space Wing.

The weather forecast overall is about 50% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. But the opportunity varies within the long window and the exact launch time is currently classified.

“Hurricane Irma is forecast to be approximately 900 miles southeast of the Spaceport during Thursday’s launch attempt, so while Irma certainly bears watching, the stalled boundary will be the main factor in Thursday’s weather,” noted the 45th Space Wing Weather Squadron.

The primary concerns on Sept. 7 are for cumulus clouds and for thick clouds in the flight path.

The odds drop to 40% favorable for the 24 hour scrub turnaround day on Friday, Sept 8

The USAF X-37B Orbital Test Vehicle is set for blastoff on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida. Photo: Boeing/USAF

Everything is currently on track for Thursday’s launch of the 230 foot tall SpaceX Falcon 9 on the X-37B OTV-5 mission.

“The Air Force Rapid Capabilities Office is undergoing final launch preparations for the fifth mission of the X-37B Orbital Test Vehicle [OTV],” the Secretary of the Air Force Public Affairs announced. “The OTV is scheduled to launch on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle.

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017 ahead of liftoff of the X-37B OTV-5 spaceplane mission on Sept. 7, 2017. Credit: Julian Leek

The X-37B will be launched for the fifth time on the OTV-5 mission atop a SpaceX Falcon 9 on Sept. 7 from Launch Complex 39A on the Kennedy Space Center Florida into low Earth orbit.

The Boeing-built X-37B is processed for flight at KSC using refurbished NASA space shuttle processing facilities now dedicated to the reusable mini-shuttle, also known as the Orbital Test Vehicle (OTV). It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

The OTV-5 mission marks the first launch of an X-37B spaceplane by SpaceX.

All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California or Florida.

“The many firsts on this mission make the upcoming OTV launch a milestone for the program,” said Randy Walden, the director of the Air Force Rapid Capabilities Office.

“It is our goal to continue advancing the X-37B OTV so it can more fully support the growing space community.”

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX will also attempt another land landing of the 156-foot-tall Falcon 9 first stage back at Landing Zone-1 (LZ-1) at the Cape.

The Falcon 9 first stage is equipped with a quartet of landing legs and grid fins to enable the rocket recycling plan.

Up close view of SpaceX Falcon 9 landing legs for the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

This marks the 7th time SpaceX attempts a ground landing at the Cape.

The booster will touch down about 8 minutes after launch and generate multiple sonic booms screaming loudly across the surrounding region and beyond.

“The fifth OTV mission will also be launched into, and landed from, a higher inclination orbit than prior missions to further expand the X-37B’s orbital envelope.”

The daylight first stage precision guided landing should offer spectators a thrilling up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching to space.

Technicians work on the Air Force X-37B Orbital Test Vehicle 4, which landed at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida May 7, 2017. Credit: Secretary of the Air Force Public Affairs.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).

The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s Tracking Data Relay Satellite-M Vital for Science Relay Poised for Liftoff Aug. 18 – Watch Live

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017. The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The last of NASA’s next generation Tracking and Data Relay Satellites (TRDS) that looks like a giant alien fish or cocooned creature but actually plays an absolutely vital role in relaying critical science measurements, research data and tracking observations gathered by the International Space Station (ISS), Hubble and a plethora of Earth science missions is poised for blastoff Friday, Aug. 18, morning from the Florida Space Coast.

Liftoff atop a United Launch Alliance Atlas V rocket of NASA’s $408 million eerily insectoid-looking TDRS-M science relay comsat atop a United Launch Alliance (ULA) Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT (2:03 GMT) Aug. 18.

Up close clean room visit with NASA’s newest science data relay comsat – Tracking and Data Relay Satellite-M (TDRS-M) inside the Astrotech payload processing facility high bay in Titusville, FL. Two gigantic fold out antennae’s, plus space to ground antenna dish visible inside the ‘cicada like cocoon’ with solar arrays below. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The Atlas V/TDRS-M launch stack was rolled out from the ULA Vertical Integration Facility (VIF) to pad 41 Wednesday morning, Aug 16 starting at about 9:10 a.m. EDT. The quarter mile move took about 50 minutes and went off without a hitch.

“The spacecraft, Atlas V rocket and all range equipment are ready,” said NASA launch director Tim Dunn at today’s pre-launch news conference at the Kennedy Space Center. “And the combined government and contractor launch team is prepared to launch TDRS-M — a critical national space asset for space communications.”

The rocket and spacecraft sailed through the Flight Readiness Review (FRR) and Launch Ready Review (LRR) over the past few days conducted by NASA, ULA and Boeing and the contractor teams.

The two stage Atlas V rocket stands 191 feet tall.

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017. The rocket rolled out from the VIF the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

You can witness the launch with you own eyes from many puiblic beaches, parks and spots ringing the Kennedy Space Center.

If you can’t personally be here to witness the launch in Florida, you can always watch NASA’s live coverage on NASA Television and the agency’s website.

The NASA/ULA/TDRS-M launch coverage will be broadcast on NASA TV beginning at 7:30 a.m. as the countdown milestones occur on Aug. 18 with additional commentary on the NASA launch blog:

https://blogs.nasa.gov/tdrs/

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

The launch window opens at 8:03 a.m. EDT extends for 40 minutes from 8:03 a.m. to 8:43 a.m.

In the event of delay for any reason, the next launch opportunity is Saturday, Aug. 19 with NASA TV coverage starting about 7:30 a.m. EDT. The launch window opens at 7:59 a.m. EDT.

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017 The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

The weather looks quite good at this time with an 80% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 18 are for thick clouds and cumulus clouds.

The odds remain at 80% favorable for the 24 hour scrub turnaround day on Aug. 19.

The launch was originally scheduled for Aug. 3 but was delayed a few weeks when the satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities.

The Omni S-band antenna was bumped during final processing activities prior to the planned encapsulation inside the nosecone, said a Boeing official at the prelaunch media briefing and had to be replaced and then retested. It is critical to the opening phases of the mission for attitude control.

Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

The importance of the TDRS constellation of satellites can’t be overstated.

Virtually all the communications relay capability involving human spaceflight, such as the ISS, resupply vehicles like the SpaceX cargo Dragon and Orbital ATK Cygnus and the soon to launch human space taxis like crew Dragon, Boeing Starliner and NASA’s Orion deep space crew capsule route their science results voice, data, command, telemetry and communications via the TDRS network of satellites.

The TDRS constellation enables both space to space and space to ground communcations for virtually the entire orbital period.

Plus it’s a super busy time at the Kennedy Space Center. Because, if all goes well Friday’s launch will be the second this week!

The excitement of space travel got a big boost at the beginning of the week with the lunchtime blastoff of a SpaceX Falcon 9 and Dragon spacecraft on a cargo mission carrying 3 tons of science and supplies to the space station. Read my onsite articles here.

Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com

The success of Monday’s SpaceX cargo Dragon rendezvous and berthing to the ISS is virtually entirely dependent on the TDRS network of satellites. That network will be enhanced with Fridays planned liftoff of NASA’s TDRS-M science relay comsat.

TDRS-M looks like a giant insect – or a fish depending on your point of view. It was folded into flight configuration for encapsulation in the clean room and the huge pair of single access antennas resembled a cocoon or a cicada. The 15 foot diameter single access antennas are large parabolic-style antennas and are mechanically steerable.

What does TDRS do? Why is it important? How does it operate?

“The existing Space Network of satellites like TDRS provide constant communications from other NASA satellites like the ISS or Earth observing satellites like Aura, Aqua, Landsat that have high bandwidth data that needs to be transmitted to the ground,” TDRS Deputy Project Manager Robert Buchanan explained to Universe Today during an interview in the Astrotech clean room.

“TRDS tracks those satellites using antennas that articulate. Those user satellites send the data to TDRS, like TDRS-M we see here and nine other TDRS satellites on orbit now tracking those satellites.”

“That data acquired is then transmitted to a ground station complex at White Sands, New Mexico. Then the data is sent to wherever those user satellites want the data to be sent is needed, such as a science data ops center or analysis center.”

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017. The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

Tracking and Data Relay Satellite artwork explains how the TDRS constellation enables continuous, global communications coverage for near-Earth spacecraft. Credit: NASA

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDRS-K and TDRS-L were launched in 2013 and 2014.

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

TDRS-M will blastoff on a ULA Atlas V in the baseline 401 configuration, with no augmentation of solid rocket boosters on the first stage. The payload fairing is 4 meters (13.1 feet) in diameter and the upper stage is powered by a single-engine Centaur.

TDRS-M will be launched to a Geostationary orbit some 22,300 miles (35,800 km) above Earth.

“The final orbital location for TDRS-M has not yet been determined,” Buchanen told me.

The Atlas V booster was assembled inside the Vertical Integration Facility (VIF) at SLC-41 and was rolled out to the launch pad 2 days before liftoff with the TDRS-M science relay comsat comfortably encapsulated inside the nose cone.

Carefully secured inside its shipping container, the TDRS-M satellite was transported on June 23 by a US Air Force cargo aircraft from Boeing’s El Segundo, California facility to Space Coast Regional Airport in Titusville, Florida, for preflight processing at Astrotech.

Watch for Ken’s continuing onsite TDRS-M, CRS-12, ORS 5 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 17-18: “TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Dream Chaser Mini-Shuttle to Fly ISS Resupply Missions on ULA Atlas V

Artist’s concept of the Sierra Nevada Corporation Dream Chaser spacecraft launching atop the United Launch Alliance Atlas V rocket in the 552 configuration on cargo missions to the International Space Station. Credit: ULA

The first two missions of the unmanned Dream Chaser mini-shuttle carrying critical cargo to the International Space Station (ISS) for NASA will fly on the most powerful version of the Atlas V rocket and start as soon as 2020, announced Sierra Nevada Corporation (SNC) and United Launch Alliance (ULA).

“We have selected United Launch Alliance’s Atlas V rocket to launch our first two Dream Chaser® spacecraft cargo missions,” said SNC of Sparks, Nevada.

Dream Chaser will launch atop the commercial Atlas V in its most powerful configuration, dubbed Atlas V 552, with five strap on solid rocket motors and a dual engine Centaur upper stage while protectively tucked inside a five meter diameter payload fairing – with wings folded.

Blast off of Dream Chaser loaded with over 5500 kilograms of cargo mass for the space station crews will take place from ULA’s seaside Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

Sierra Nevada Corporation’s Dream Chaser spacecraft docks at the International Space Station.
Credits: Sierra Nevada Corporation

The unique lifting body design enables runway landings for Dream Chaser, similar to the NASA’s Space Shuttle at the Shuttle Landing Facility runway at NASA’s Kennedy Space Center in Florida.

The ULA Atlas V enjoys a 100% success rate. It has also been chosen by Boeing to ferry crews on piloted missions of their CST-100 Starliner astronaut space taxi to the ISS and back. The Centaur upper stage will be equipped with two RL-10 engines for both Dream Chaser and Starliner flights.

“SNC recognizes the proven reliability of the Atlas V rocket and its availability and schedule performance makes it the right choice for the first two flights of the Dream Chaser,” said Mark Sirangelo, corporate vice president of SNC’s Space Systems business area, in a statement.

“Humbled and honored by your trust in us,” tweeted ULA CEO Tory Bruno following the announcement.

Liftoff of the maiden pair of Dream Chaser cargo missions to the ISS are expected in 2020 and 2021 under the Commercial Resupply Services 2 (CRS2) contract with NASA.

Rendering of Launch of SNC’s Dream Chaser Cargo System Aboard an Atlas V Rocket. Credit: SNC

“ULA is pleased to partner with Sierra Nevada Corporation to launch its Dream Chaser cargo system to the International Space Station in less than three years,” said Gary Wentz, ULA vice president of Human and Commercial Systems.

“We recognize the importance of on time and reliable transportation of crew and cargo to Station and are honored the Atlas V was selected to continue to launch cargo resupply missions for NASA.”

By utilizing the most powerful variant of ULA’s Atlas V, Dream Chaser will be capable of transporting over 5,500 kilograms (12,000 pounds) of pressurized and unpressurized cargo mass – including science experiments, research gear, spare part, crew supplies, food, water, clothing and more per ISS mission.

“In addition, a significant amount of cargo, almost 2,000 kilograms is directly returned from the ISS to a gentle runway landing at a pinpoint location,” according to SNC.

“Dream Chaser’s all non-toxic systems design allows personnel to simply walk up to the vehicle after landing, providing immediate access to time-critical science as soon as the wheels stop.”

“ULA is an important player in the market and we appreciate their history and continued contributions to space flights and are pleased to support the aerospace community in Colorado and Alabama,” added Sirangelo.

Under the NASA CRS-2 contract awarded in 2016, Dream Chaser becomes the third ISS resupply provider, joining the current ISS commercial cargo vehicle providers, namely the Cygnus from Orbital ATK of Dulles, Virginia and the cargo Dragon from SpaceX of Hawthorne, California.

NASA decided to plus up the number of ISS commercial cargo providers from two to three for the critical task of ensuring the regular delivery of critical science, crew supplies, provisions, spare parts and assorted gear to the multinational crews living and working aboard the massive orbiting outpost.

NASA’s CRS-2 contracts run from 2019 through 2024 and specify six cargo missions for each of the three commercial providers.

By adding a new third provider, NASA simultaneously gains the benefit of additional capability and flexibility and also spreads out the risk.

Both SpaceX and Orbital ATK suffered catastrophic launch failures during ISS resupply missions, in June 2015 and October 2014 respectively, from which both firms have recovered.

Orbital ATK and SpaceX both successfully launched ISS cargo missions this year. Indeed a trio of Orbital ATK Cygnus spacecraft have already launched on the Atlas V, including the OA-7 resupply mission in April 2017.

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX has already launched a pair of resupply missions this year on the CRS-10 and CRS-11 flights in February and June 2017.

Unlike the Cygnus which burns up on reentry and Dragon which lands via parachutes, the reusable Dream Chaser is capable of low-g reentry and runway landings. This is very beneficial for sensitive scientific experiments and allows much quicker access by researchers to time critical cargo.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dream Chaser has been under development for more than 10 years. It was originally developed as a manned vehicle and a contender for NASA’s commercial crew vehicles. When SNC lost the bid to Boeing and SpaceX in 2014, the company opted to develop this unmanned variant instead.

A full scale test version of the original Dream Chaser is currently undergoing ground tests at NASA’s Armstrong Flight Research Center in California. Approach and landing tests are planned for this fall.

Other current cargo providers to the ISS include the Russian Progress and Japanese HTV vessels.

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Sierra Nevada Dream Chaser engineering test article in flight during prior captive-carry tests. Credit: NASA