NASA has Plans for More Cargo Deliveries to the Moon

Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. Credit: SpaceX/Blue Origin

Through the Artemis Program, NASA hopes to lay the foundations for a program of “sustained lunar exploration and development.” This will include regular missions to the surface, the creation of infrastructure and habitats, and a long-term human presence. To facilitate this, NASA is teaming up with industry and international partners to develop Human Landing Systems (HLS) that can transport crews to and from the lunar surface and landers that can deliver payloads of equipment, vehicles, and supplies to the lunar surface.

In a recent statement, NASA indicated that it intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver equipment and infrastructure to the lunar surface. NASA also plans to assign demonstration missions to these companies, in addition to design certification reviews, which will validate their concepts. This decision builds on NASA’s earlier request, made in 2023, that the two companies develop cargo versions of their HLS concepts, which are currently in development for the Artemis III, Artemis IV, and Artemis V missions.

Continue reading “NASA has Plans for More Cargo Deliveries to the Moon”

Jared Isaacman is Trump’s Choice for NASA Administrator

Jared Isaacman

As a new President of the United States is elected, the NASA administrator role is usually reviewed. With the election of Trump, a new administrator has been chosen, Jared Isaacman. He is a billionaire entrepreneur, an experienced jet pilot and has himself completed to private flights to space. He was also the first to complete a spacewalk during the Polaris Dawn mission. Isaacman replaces the outgoing administrator Bill Nelson, a former space shuttle astronaut and senator. 

Continue reading “Jared Isaacman is Trump’s Choice for NASA Administrator”

NASA Wants Students’ Help Designing Missions to Other Moons

One of NASA’s primary missions is to inspire the next generation of scientists and engineers to join the STEM field. It does so by producing inspirational and educational content on various platforms. But sometimes, it takes a more direct approach by rewarding students for their contributions to solving a particular problem NASA is facing. Recently, the organization announced such a challenge – the Power to Explore Challenge, which is open to submission from K-12 students until the end of January.

Continue reading “NASA Wants Students’ Help Designing Missions to Other Moons”

NASA, SpaceX Illustrate Key Moments of Artemis Lunar Lander Mission

Artist's rendering of the Starship HLS on the lunar surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX
Artist's rendering of the Starship HLS on the Moon's surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX

Before the decade is out, as part of the Artemis Program, NASA plans to send astronauts to the Moon for the first time since the Apollo Era. To realize this goal, they have contracted with commercial space industries to develop all the necessary components. This includes the Space Launch System (SLS) and the Orion spacecraft that will take the Artemis astronauts to the Moon. There’s also the Lunar Gateway and the Artemis Base Camp, the infrastructure that will facilitate regular missions to the Moon after 2028.

In between, NASA has also partnered with companies to develop the Human Landing Systems (HLS) that will transport the Artemis astronauts to the lunar surface and back. This includes the Starship HLS SpaceX is currently developing for NASA, which will rendezvous with the Orion spacecraft in lunar orbit and allow the Artemis III astronauts to land on the Moon (which will take place no sooner than September 2026). In a series of newly-updated images, SpaceX has provided artistic renders of what key moments in this mission will look like.

Continue reading “NASA, SpaceX Illustrate Key Moments of Artemis Lunar Lander Mission”

NASA’s JPL Lays Off Another 325 People

NASA's JPL announced a reduction in its workforce for the second time in 2024. Credit: NASA/JPL/Caltech

NASA’s Jet Propulsion Lab has announced a second round of layoffs for 2024, this time laying off 325 people – about 5% of its workforce. The announcement was made on Nov. 12 in a memo sent to employees, which notes the layoffs could have been even larger. The last cut was made this past February, when 530 employees were let go. Part of the issues which forced the layoffs comes from the the possible cancelation of the Mars Sample Return mission. With the October 2024 launch of Europa Clipper, JPL doesn’t have a flagship mission in the pipeline right now.

Continue reading “NASA’s JPL Lays Off Another 325 People”

NASA Wants to Move Heavy Cargo on the Moon

Illustration of logistics elements on the lunar surface. Credit: NASA

While new rockets and human missions to the Moon are in the press, NASA is quietly thinking through the nuts and bolts of a long-term presence on the Moon. They have already released two white papers about the lunar logistics they’ll require in the future and are now requesting proposals from companies to supply some serious cargo transportation. But this isn’t just for space transport; NASA is also looking for ground transportation on the Moon that can move cargo weighing as much as 2,000 to 6,000 kg (4,400 to 13,000 pounds.)

Continue reading “NASA Wants to Move Heavy Cargo on the Moon”

New Simulation Will Help Future Missions Collect Moon Dust

The ESA lunar base, showing its location within the Shackleton Crater at the lunar south pole. New research proposes building a repository at one of the lunar poles to safeguard Earth's biodiversity. Credit: SOM/ESA

In this decade and the next, multiple space agencies will send crewed missions to the Moon for the first time since the Apollo Era. These missions will culminate in the creation of permanent lunar infrastructure, including habitats, using local resources – aka. In-situ resource utilization (ISRU). This will include lunar regolith, which robots equipped with additive manufacturing (3D printing) will use to fashion building materials. These operations will leverage advances in teleoperation, where controllers on Earth will remotely operate robots on the lunar surface.

According to new research by scientists at the University of Bristol, the technology is one step closer to realization. Through a virtual simulation, the team completed a sample collection task and sent commands to a robot that mimicked the simulation’s actions in real life. Meanwhile, the team monitored the simulation without requiring live camera streams, which are subject to a communications lag on the Moon. This project effectively demonstrates that the team’s method is well-suited for teleoperations on the lunar surface.

Continue reading “New Simulation Will Help Future Missions Collect Moon Dust”

Space Force’s X-37B will Perform “Never Before-Seen Maneuvers” in Orbit

Artist rendering of the X-37B conducting an aerobraking maneuver using the drag of Earth’s atmosphere. Credit: Boeing Space

The X-37B Orbital Test Vehicle (OTV) has been shrouded in mystery since its maiden flight in 2011. Designed by Boeing and operated by the U.S. Space Force (USSF), this remotely operated, reusable space plane is designed to operate in Low-Earth Orbit (LEO), 240 to 800 km (150 to 500 mi) above the Earth, and test reusable vehicle technologies that support long-term space objectives. On December 29th, 2023, the X-37B began its seventh mission (OTV-7) and has reportedly been conducting experiments on the effects of space radiation and testing Space Domain Awareness (SDA) technologies.

As part of this mission, the X-37B will soon begin executing a series of novel maneuvers to change its orbit around Earth. These maneuvers will consist of the spacecraft brushing against Earth’s upper atmosphere to shed speed and lower its orbit without expending much fuel—a technique known as “aerobraking.” This is the first time the X-37B has performed such a maneuver, which will help it evade detection by potentially hostile nations and perform undetected low passes over Earth during future missions.

Continue reading “Space Force’s X-37B will Perform “Never Before-Seen Maneuvers” in Orbit”

A Possible Exomoon Could be Volcanic, like Jupiter’s Moon Io

New NASA-led research suggests a sodium cloud seen around the exoplanet WASP-49 b might be created by a volcanic moon, which is depicted in this artist’s concept. Jupiter’s fiery moon Io produces a similar cloud. Credit: NASA/JPL-Caltech

In 2012, astronomers detected a gas giant transiting in front of WASP-49A, a G-type star located about 635 light-years from Earth. The data obtained by the WASP survey indicated that this exoplanet (WASP-49 b) is a gas giant roughly the same size as Jupiter and 37% as massive. In 2017, WASP-49 b was found to have an extensive cloud of sodium, which was confounding to scientists. Further observations in 2019 using the Hubble Space Telescope detected the presence of other minerals, including magnesium and iron, which appeared to be magnetically bound to the gas giant.

WASP-49 b and its star are predominantly composed of hydrogen and helium, with only trace amounts of sodium – not enough to account for this cloud. In addition, there was no indication of how this sodium cloud was ejected into space. In our Solar System, gas emissions from Jupiter’s volcanic moon Io create a similar phenomenon. In a recent study, an international team led by scientists from NASA’s Jet Propulsion Laboratory found potential evidence of a rocky, volcanic moon orbiting WASP-49 b. While not yet confirmed, the presence of a volcanic exomoon around this gas giant could explain the presence of this sodium cloud.

Continue reading “A Possible Exomoon Could be Volcanic, like Jupiter’s Moon Io”