German ‘Largest Artificial Sun’ To Generate Climate Friendly Fuel

Hydrogen is the most abundant element in the Universe. But here on Earth, it’s rather rare. That’s unfortunate, because in our warming world, its status as an emissions-free fuel makes it a coveted chemical. If German researchers are successful, their Synlight project will help make renewable hydrogen fuel a reality.

Dubbed the “artificial Sun”, the Synlight uses concentrated light to power Thermochemical Water Splitting (TWS.) Every school child knows you can produce hydrogen by electrolysis—running an electric current through water. But that takes an enormous amount of electricity. TWS might be a better way of getting hydrogen out of water, but it takes an enormous amount of energy too, and that’s what the German research is about.

When combusted with pure oxygen—inside a fuel cell for example—hydrogen’s only waste product is water. No greenhouse gases or particulates are produced. But if we want to use it to power our cars, buses, trucks, and even airplanes, we need enormous amounts of it. And we need to produce it cost-effectively.

“Renewable energies will be the mainstay of global power supply in the future.” – Karsten Lemmer DLR Executive Board Member

The idea is to use the heat generated by Concentrated Solar Power (CSP) to extract hydrogen from water, thereby eliminating the need for electricity. CSP systems use mirrors or lenses to concentrate a large area of sunlight into a small area. The heat from that action can be used to power TWS. The Synlight project in Germany is demonstrating the viability of TWS by mimicking the effect of concentrated sunlight. In doing so, researchers there are building what’s being called the world’s largest artificial Sun.

Each of Synlight’s 149 zenon short-arc lamps can be controlled individually. Image: DLR/Synlight/Markus Hauschild

German researchers at the German Aerospace Center (DLR) at Julich near Cologne built the Synlight, a system of 149, high power lamps of the type used in film projections. When all these lamps are turned on, Synlight produces light that is about 10,000 times more intense than natural sunlight on Earth. When all the lamps are aimed at a single spot, Synlight generates temperatures up to 3000 Celsius. The challenge now is to develop materials and processes that can operate in such an extreme temperature.

The 15m tall Synlight experiment is housed in this building in Julich. The building contains 3 separate radiation chambers for different experiments. Image: DLR CC By 3.0

The Synlight system itself uses an enormous amount of electrical power to operate. But that’s often the case with experimental facilities. The Synlight project will mimic the effect of intense, continuous solar energy, something that is not readily available in Germany. By building a test facility powered by electricity, researchers will be able to reliably perform experiments without being delayed or affected by cloudy weather.

“Fuels, propellants and combustibles acquired using solar power offer immense potential for long-term storage and the production of chemical raw materials, and the reduction of carbon dioxide emissions. Synlight will enhance our research in this field.” – Karsten Lemmer, DLR Executive Board Member

As Johannes Remmel, the North Rhine-Westphalia Minister for Climate Protection, said, “”We need to expand existing technology in practical ways in order to achieve renewable energy targets, but the energy transition will falter without investments in innovative research, in state-of-the-art technologies and in global lighthouse projects like Synlight.”

The DLR is involved in the PS10 solar power tower in Spain. The PS10 is the world’s fist commercial concentrating solar power tower. Image: By afloresm – SOLUCAR PS10, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=2821733

This is not the German Aerospace Center’s first foray in concentrated solar power. They’re involved in a number of projects to advance concentrated solar power and thermal water splitting. The DLR is a partner in the Hydrosol II pilot in Spain. It’s a reactor for solar thermochemical hydrogen production that has been in operation since 2008. They’re also involved in the first commercially operated solar tower plant, an 11 megawatt system in Spain called the PS10 solar power tower.

What is an Ice Age?

Scientists have known for some time that the Earth goes through cycles of climatic change. Owing to changes in Earth’s orbit, geological factors, and/or changes in Solar output, Earth occasionally experiences significant reductions in its surface and atmospheric temperatures. This results in long-term periods of glaciation, or what is more colloquially known as an “ice age”.

These periods are characterized by the growth and expansion of ice sheets across the Earth’s surface, which occurs every few million years. By definition we are still in the last great ice age – which began during the late Pliocene epoch (ca. 2.58 million years ago) – and are currently in an interglacial period, characterized by the retreat of glaciers.

Definition:

While the term “ice age” is sometime used liberally to refer to cold periods in Earth’s history, this tends to belie the complexity of glacial periods. The most accurate definition would be that ice ages are periods when ice sheets and glaciers expand across the planet, which correspond to significant drops in global temperatures and can last for millions of years.

The Antarctic ice sheet, which expanded during the last ice age. Credit: Wikipedia Commons/Stephen Hudson

During an ice age, there are significant temperature differences between the equator and the poles, and temperatures at deep-sea levels have also been shown to drop. This allows for large glaciers (comparable to continents) to expand, covering much of the surface area of the planet. Since the Pre-Cambrian Era (ca. 600 million years ago), ice ages have occurred at widely space intervals about about 200 million years.

History of Study:

The first scientist to theorize about past glacial periods was the 18th century Swiss engineer and geographer Pierre Martel. In 1742, while visiting an Alpine valley, he wrote about the dispersal of large rocks in erratic formations, which the locals attributed to the glaciers having once extended much further. Similar explanations began to emerge in the ensuing decades for similar patterns of boulder distribution in other parts of he world.

From the middle of the 18th century onward, European scholars increasingly began to contemplate ice as a means of transporting rocky material. This included the presence of boulders in coastal areas in the Baltic states and the Scandinavian peninsula. However, it was Danish-Norwegian geologist Jens Esmark (1762–1839) who first argued the existence of a sequence of world wide ice ages.

This theory was detailed in a paper he published in 1824, in which he proposed that changes in Earth’s climate (which were due to changes in its orbit) were responsible. This was followed in 1832 by German geologist and forestry professor Albrecht Reinhard Bernhardi speculating about how the polar ice caps may have once reached as far as the temperate zones of the world.

Overlook of the Grinnell Glacier in Glacier National Park, Montana. Credit: USGS

At this same time, German botanist Karl Friedrich Schimper and Swiss-American biologist Louis Agassiz began independently developing their own theory about global glaciation, which led toSchimper coining the term “ice age” in 1837. By the late 19th century, ice age theory gradually began to gain widespread acceptance over the notion that the Earth cooled gradually from its original, molten state.

By the 20th century, Serbian polymath Milutin Milankovic developed his concept of Milankovic cycles, which linked long-term climate changes to periodic changes in the Earth’s orbit around the Sun. This offered a demonstrable explanation for ice ages, and allowed scientists to make predictions about when significant changes in Earth’s climate might occur again.

Evidence for Ice Ages:

There are three forms of evidence for ice age theory, which range from the geological and the chemical to the paleontological (i.e. the fossil record). Each has its particular benefits and drawbacks, and has helped scientists to develop a general understanding of the effect ice ages have had on geological record for the past few billion years.

Geological: Geological evidence includes rock scouring and scratching, carved valleys, the formation of peculiar types of ridges, and the deposition of unconsolidated material (moraines) and large rocks in erratic formations.  While this sort of evidence is what led to ice age theory in the first place, it remains temperamental.

For one, successive glaciation periods have different effects on a region, which tends to distort or erase geological evidence over time. In addition, geological evidence is difficult to date exactly, causing problems when it comes to getting an accurate assessment of how long glacial and interglacial periods have lasted.

Horseshoe-shaped lateral moraines at the margin of the Penny Ice Cap on Baffin Island, Nunavut, Canada. Lateral moraines are accumulations of debris along the sides of a glacier formed by material falling from the valley wall. Credit: NASA/Michael Studinger

Chemical: This consists largely of variations in the ratios of isotopes in fossils discovered in sediment and rock samples. For more recent glacial periods, ice cores are used to construct a global temperature record, largely from the presence of heavier isotopes (which lead to higher evaporation temperatures). They often contain bubbles of air as well, which are examined to assess the composition of the atmosphere at the time.

Limitations arise from various factors, however. Foremost among these are isotope ratios, which can have a confounding effect on accurate dating. But as far as the most recent glacial and interglacial periods are concerned (i.e. during the past few million years), ice core and ocean sediment core samples remain the most trusted form of evidence.

Paleontological: This evidence consists of changes in the geographical distribution of fossils. Basically, organisms that thrive in warmer conditions become extinct during glacial periods (or become highly restricted in lower latitudes), while cold-adapted organisms thrive in these same latitudes. Ergo, reduced amounts of fossils in higher latitudes is an indication of the spread of glacial ice sheets.

This evidence can also be difficult to interpret because it requires that the fossils be relevant to the geological period under study. It also requires that sediments over wide ranges of latitudes and long periods of time show a distinct correlation (due to changes in the Earth’s crust over time). In addition, there are many ancient organisms that have shown the ability to survive changes in conditions for millions of years.

As a result, scientists rely on a combined approach and multiple lines of evidence wherever possible.

Ice ages are characterized by a drop in average global temperatures, resulting in the expansion of ice sheets globally. Credit: NASA

Causes of Ice Ages:

The scientific consensus is that several factors contribute to the onset of ice ages. These include changes in Earth’s orbit around the Sun, the motion of tectonic plates, variations in Solar output, changes in atmospheric composition, volcanic activity, and even the impact of large meteorites. Many of these are interrelated, and the exact role that each play is subject to debate.

Earth’s Orbit: Essentially, Earth’s orbit around the Sun is subject to cyclic variations over time, a phenomenon also known as Milankovic (or Milankovitch) cycles. These are characterized by changing distances from the Sun, the precession of the Earth’s axis, and the changing tilt of the Earth’s axis – all of which result in a redistribution of the sunlight received by the Earth.

The most compelling evidence for Milankovic orbital forcing corresponds closely to the most recent (and studied) period in Earth’s history (circa. during the last 400,000 years). During this period, the timing of glacial and interglacial periods are so close to changes in Milankovic orbital forcing periods that it is the most widely accepted explanation for the last ice age.

Tectonic Plates: The geological record shows an apparent correlation between the onset of ice ages and the positions of the Earth’s continents. During these periods, they were in positions which disrupted or blocked the flow of warm water to the poles, thus allowing ice sheets to form.

The Earth’s Tectonic Plates. Credit: msnucleus.org

This in turn increased the Earth’s albedo, which reduces the amount of solar energy absorbed by the Earth’s atmosphere and crust. This resulted in a positive feedback loop, where the advance of ice sheets further increased the Earth’s albedo and allowed for more cooling and more glaciation. This would continue until the onset of a greenhouse effect ended the period of glaciation.

Based on past ice-ages, three configurations have been identified that could lead to an ice age – a continent sitting atop the Earth’s pole (as Antarctica does today); a polar sea being land-locked (as the Arctic Ocean is today); and a super continent covering most of the equator (as Rodinia did during the Cryogenian period).

In addition, some scientists believe that the Himalayan mountain chain – which formed 70 million years ago – has played a major role in the most recent ice age. By increasing the Earth’s total rainfall, it has also increased the rate at which CO² has been removed from the atmosphere (thereby decreasing the greenhouse effect). Its existence has also paralleled the long-term decrease in Earth’s average temperature over the past 40 million years.

Atmospheric Composition: There is evidence that levels of greenhouse gases fall with the advance of ice sheets and rise with their retreat. According to the “Snowball Earth” hypothesis – in which ice completely or very nearly covered the planet at least once in the past – the ice age of the late Proterozoic was ended by an increase in CO² levels in the atmosphere, which was attributed to volcanic eruptions.

Image of the Harding Ice Field on Alaska’s Kenai Peninsula. Credit: US Fish and Wildlife Service

However, there are those who suggest that increased levels of carbon dioxide may have served as a feedback mechanism, rather than the cause. For example, in 2009, an international team of scientists produced a study – titled “The Last Glacial Maximum” – that indicated that an increase in solar irradiance (i.e. energy absorbed from the Sun) provided the initial change, whereas greenhouse gases accounted for the magnitude of change.

Major Ice Ages:

Scientists have determined that at least five major ice ages took place in Earth’s history. These include the Huronian, Cryogenian, Andean-Saharan, Karoo, and the Qauternary ice ages. The Huronian Ice Age is dated to the early Protzerozoic Eon, roughly 2.4 to 2.1 billion years ago, based on geological evidence observed to the north and north-east of Lake Huron (and correlated to deposits found in Michigan and Western Australia).

The Cryogenian Ice Age lasted from roughly 850 to 630 million years ago, and was perhaps the most severe in Earth’s history. It is believed that during this period, the glacial ice sheets reached the equator, thus leading to a “Snowball Earth” scenario. It is also believed that ended due to a sudden increase in volcanic activity that triggered a greenhouse effect, though (as noted) this is subject to debate.

The Andean-Saharan Ice Age occurred during the Late Ordovician and the Silurian period (roughly 460 to 420 million years ago). As the name suggests, the evidence here is based on geological samples take from the Tassili n’Ajjer mountain range in the western Sahara, and correlated by evidence obtained from the Andean mountain chain in South America (as well as the Arabian peninsula and the south Amazon basin).

Floating ice at the calving front of Greenland’s Kangerdlugssuaq glacier, photographed in 2011 during Operation IceBridge. Credit: NASA/Michael Studinger

The Karoo Ice Age is attributed to the evolution of land plants during the onset of the Devonian period (ca. 360 to 260 million years ago) which caused a long-term increase in planetary oxygen levels and a reduction in CO² levels – leading to global cooling. It is named after sedimentary deposits that were discovered in the Karoo region of South Africa, with correlating evidence found in Argentina.

The current ice age, known as the Pliocene-Quaternary glaciation, started about 2.58 million years ago during the late Pliocene, when the spread of ice sheets in the Northern Hemisphere began. Since then, the world has experienced several glacial and interglacial periods, where ice sheets advance and retreat on time scales of 40,000 to 100,000 years.

The Earth is currently in an interglacial period, and the last glacial period ended about 10,000 years ago. What remains of the continental ice sheets that once stretched across the globe are now restricted to Greenland and Antarctic, as well as smaller glaciers – like the one that covers Baffin Island.

Anthropogenic Climate Change:

The exact role played by all the mechanisms that ice ages are attributed to – i.e. orbital forcing, solar forcing, geological and volcanic activity – are not yet entirely understood. However, given the role of carbon dioxide and other greenhouse gas emissions, there has been a great deal of concern in recent decades what long-term effects human activity will have on the planet.

For instance, in at least two major ice ages, the Cryogenian and Karoo Ice Ages, increases and decreases in atmospheric greenhouse gases are believed to have played a major role. In all other cases, where orbital forcing is believed to be the primary cause of an ice age ending, increased greenhouse gas emissions were still responsible for the negative feedback that led to even greater increases in temperature.

The addition of CO2 by human activity has also played a direct role in climatic changes taking place around the world. Currently, the burning of fossil fuels by humans constitutes the largest source of emissions of carbon dioxide (about 90%) worldwide, which is one of the main greenhouse gases that allows radiative forcing (aka. the Greenhouse Effect) to take place.

In 2013, the National Oceanic and Atmospheric Administration announced that CO² levels in the upper atmosphere reached 400 parts per million (ppm) for the first time since measurements began in the 19th century. Based on the current rate at which emissions are growing, NASA estimates that carbon levels could reach between 550 to 800 ppm in the coming century.

If the former scenario is the case, NASA anticipates a rise of 2.5 °C (4.5 °F) in average global temperatures, which would be sustainable. However, should the latter scenario prove to be the case, global temperatures will rise by an average of 4.5 °C (8 °F), which would make life untenable for many parts of the planet. For this reason, alternatives are being sought out for development and widespread commercial adoption.

What’s more, according to a 2012 research study published in Nature Geoscience – titled “Determining the natural length of the current interglacial” – human emissions of CO² are also expected to defer the next ice age. Using data on Earth’s orbit to calculate the length of interglacial periods, the research team concluded that the next ice (expected in 1500 years) would require atmospheric CO² levels to remain beneath around 240?ppm.

Learning more about the longer ice ages as well the shorter glacial periods that have taken place in Earth’s past is important step towards understanding how Earth’s climate changes over time. This is especially important as scientists seek to determine how much of modern climate change is man-made, and what possible counter-measures can be developed.

We have written many articles about the Ice Age for Universe Today. Here’s New Study Reveals Little Ice Age Driven by Volcanism, Did a Killer Asteroid Drive the Planet into an Ice Age?, Was There a Slushball Earth?, and Is Mars Coming out of an Ice Age?

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth and Episode 308: Climate Change.

Source:

What Are Fossil Fuels?

The term “fossil fuels” is thrown about quite a lot these days. More often than not, it comes up in the context of environmental issues, Climate Change, or the so-called “energy crisis”. In addition to be a major source of pollution, humanity’s dependence on fossil fuels has led to a fair bit of anxiety in recent decades, and fueled demands for alternatives.

But just what are fossil fuels? While most people tend to think of gasoline and oil when they hear these words, it actually applies to many different kinds of energy sources that are derived from decomposed organic material. How humanity came to be so dependent on them, and what can we look to in order to replace them, are some of the biggest concerns facing us today.

Definition:

Fossil fuels refers to energy sources that are formed as a result of the anaerobic decomposition of living matter that contains energy as a result of ancient photosynthesis. Typically, these organisms have been dead for millions of years, with some dating back as far as the Cryogenian Period (ca. 650 million years ago).

The Bryan Mound Strategic Petroleum Reserve, located in Brazoria Country, Texas. Credit: energy.gov

Fossil fuels contain high percentages of carbon and stored energy in their chemical bonds. They can take the form of petroleum, coal, natural gas, and other combustible, hydrocarbon compounds. Whereas petroleum and natural gas are formed by the decomposition of organisms, coal and methane are the results of the decomposition of terrestrial plants.

In the case of the former, it is believed that large quantities of phytoplankton and zooplankton settled on the bottoms of seas or lakes millions of years ago. Over the course of many millions of years, this organic matter mixed with mud and was buried under heavy layers of sediment. The resulting heat and pressure caused the organic matter to become chemically altered, eventually forming carbon compounds.

In the case of the latter, the source was dead plant matter that was covered in sediment during the Carboniferous period – i.e. the end of Devonian Period to the beginning of the Permian Period (ca. 300 and 350 million years ago). Over time, these deposits either solidified or became gaseous, creating coal fields, methane and natural gases.

Modern Uses:

Coal has been used since ancient times as a fuel, often in furnaces to melt metal ores. Unprocessed and unrefined oil has also been burned for centuries in lamps for the sake of lighting, and semi-solid hydrocarbons (like tar) were used for waterproofing (largely on the bottoms of boats and on docks) and for embalming.

Widespread use of fossil fuels as sources of energy began during the Industrial Revolution (18th – 19th century), where coal and oil began replacing animal sources (i.e. whale oil) to power steam engines. By the time of the Second Industrial Revolution (ca. 1870 – 1914), oil and coal began to be used to power electrical generators.

The invention of the internal combustion engine (i.e. automobiles) increased demands for oil exponentially, as did the development of aircraft. The petrochemical industry emerged concurrently, with petroleum being used to manufacture products ranging from plastics to feedstock. In addition, tar (a leftover product from petroleum extraction) became widely used in the construction of roads and highways.

Fossil fuels became central to modern manufacturing, industry and transportation because of how they produce significant amounts of energy per unit mass. As of 2015, according to the International Energy Agency (IEA) the world’s energy needs are still predominantly provided for by sources like coal (41.3%) and natural gas (21.7%), though oil has dropped to just 4.4%.

The fossil fuel industry also accounts for a major share of the global economy. In 2014, global coal consumption exceeded 3.8 billion metric tons, and accounted for US $46 billion in revenue in the US alone. In 2012, global oil and gas production reached over 75 million barrels per day, while the global revenue generated by the industry reached about US $1.247 trillion.

Countries of the world ranked in terms of their annual production of oil. Credit: Wikipedia Commons/Ali Zifan

The fossil fuel industry also enjoys a great deal of government protection and incentives worldwide. A 2014 report from the IEA indicated that the fossil fuel industry collects $550 billion a year in global government subsidies. However, a 2015 study by the International Monetary Fund (IMF) indicated that the real cost of these subsidies to governments worldwide is around US $5.3 trillion (or 6.5 % of global GDP).

Environmental Effects:

The connection between fossil fuels and air pollution in industrialized nations and major cities has been evident since the Industrial Revolution. Pollutants generated by the burning of coal and oil include carbon dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide, volatile organic compounds and heavy metals, all of which have been linked to respiratory illnesses and increased risks of disease.

The burning of fossil fuels by humans is also the largest source of emissions of carbon dioxide (about 90%) worldwide, which is one of the main greenhouse gases that allows radiative forcing (aka. the Greenhouse Effect) to take place, and contributes to global warming.

In 2013, the National Oceanic and Atmospheric Administration announced that CO² levels in the upper atmosphere reached 400 parts per million (ppm) for the first time since measurements began in the 19th century. Based on the current rate at which emissions are growing, NASA estimates that carbon levels could reach between 550 to 800 ppm in the coming century.

If the former scenario is the case, NASA anticipates a rise of 2.5 °C (4.5 °F) in average global temperatures, which would be sustainable. However, should the latter scenario prove to be the case, global temperatures will rise by an average of 4.5 °C (8 °F), which would make life untenable for many parts of the planet. For this reason, alternatives are being sought out for development and widespread commercial adoption.

Alternatives:

Due to the long-term effects of fossil fuel-use, scientists and researchers have been developing alternatives for over a century. These include concepts like hydroelectric power – which has existed since the late 19th century – where falling water is used to spin turbines and generate electricity.

Since the latter half of the 20th century, nuclear power has also been looked to as an alternative to coal and petroleum. Here, slow-fission reactors (which rely on uranium or the radioactive decay of other heavy elements)  are used to heat water, which in turn generates steam to spin turbines.

Since the mid-2oth century, several more methods have been proposed that range from the simple to the highly sophisticated. These include wind power, where changes in airflow pushes turbines; solar power, where photovoltaic cells convert the Sun’s energy (and sometimes heat) into electricity; geothermal power, which relies on steam tapped from the Earth’s crust to rotate turbines; and tidal power, where changes in the tides push turbines.

The spherical tokamak MAST at the Culham Centre for Fusion Energy (UK). Photo: CCFE

Alternative fuels are also being derived from biological sources, where plant and biological sources are used to replace gasoline. Hydrogen is also being developed as a power source, ranging from hydrogen fuel cells to water being used to powering internal combustion and electric engines. Fusion power is also being developed, where atoms of hydrogen are fused inside reactors to generate clean, abundant energy.

By the middle of the 21st century, fossil fuels are expected to have become obsolete, or at least declined significantly in terms of their use. But from a historical standpoint, they have been associated with the largest and most prolonged explosions in human growth. Whether humanity will survive the long-term effects of this growth – which has included an intense amount of fossil fuel burning and greenhouse gas emissions – remains to be seen.

We have written many articles about fossil fuels for Universe Today. Here’s What is an Enhanced Greenhouse Effect?, Gases in the Atmosphere, What Causes Air Pollution?, What if We Burn Everything?, What is Alternative Energy?, and “Climate Change is Now More Certain Than Ever,” New Report Says

If you’d like more info on Fossil Fuels, check out NASA’s Earth Observatory. And here’s a link to NASA’s Article on Safeguarding our Atmosphere.

Astronomy Cast also has some episodes that are relevant to the subject. Here’s Episode 51: Earth and Episode 308: Climate Change.

Sources:

What is Alternative Energy?

In recent years, alternative energy has been the subject of intense interest and debate. Thanks to the threat of Climate Change, and the fact that average global temperatures continue to rise year after year, the drive to find forms of energy that will reduce humanity’s reliance on fossil fuels, coal, and other polluting methods has naturally intensified.

While most concepts for alternative energy are not new, it has only been in the past few decades that the issue has become pressing. And thanks to improvements in technology and production, the costs of most forms of alternative energy has been dropping while efficiency has been increasing. But just what is alternative energy, and what is the likelihood of it becoming mainstream?

Definition:

Naturally, there is some debate as to what “alternative energy” means and what it can be applied to. On the one hand, the term can refer to forms of energy that do not increase humanity’s carbon footprint. In this respect, it can include things as nuclear facilities, hydroelectric power, and even things like natural gas and “clean coal”.

Residential solar panels in Germany. Credit: Wikimedia Commons/ Sideka Solartechnik.
Residential solar panels in Germany. Credit: Wikimedia Commons/ Sideka Solartechnik

On the other hand, the term is also used to refer to what are currently considered to be non-traditional methods of energy – such as solar, wind, geothermal, biomass, and other recent additions. This sort of classification rules out methods like hydroelectric, which have been around for over a century and are therefore quite common to certain regions of the world.

Another factor is that alternative energy sources are considered to be “clean”, meaning that they don’t produce harmful pollutants. As already noted, this can refer to carbon dioxide but also other emissions like carbon monoxide, sulfur dioxide, nitrogen oxide, and others. Within these parameters, nuclear energy is not considered an alternative energy source because it produces radioactive waste that is highly toxic and must be stored.

In all cases, however, the term is used to refer to forms of energy that will come to replace fossil fuels and coal as the predominant form of energy production in the coming decades.

Types of Alternative Energy:

Strictly speaking, there are many types of alternative energy. Once again, definitions become a bit of a sticking point, and the term has been used in the past to refer to any method that was considered non-mainstream at the time. But applying the term broadly to mean alternatives to coal and fossil fuels, it can include any or all of the following:

Hydroelectricity: This refers to energy generated by hydroelectric dams, where falling water (i.e. rivers or canals) are channeled through an apparatus to spin turbines and generate electricity.

A nuclear power plant, releasing hot steam as a byproduct of its slow fission process. Credit: Wikipedia Commons/Emmelie Callewaert

Nuclear Power: Energy that is produced through slow-fission reactions. Rods of uranium or other radioactive elements heat water to generate steam, which in turn spins turbines to generate electricity.

Solar Power: Energy harnessed directly from the Sun, where photovoltaic cells (usually composed of silicon substrate, and arranged in large arrays) convert the Sun’s rays directly into electrical energy. In some cases, the heat produced by sunshine is harnessed to produce electricity as well, which is known as solar-thermal power.

Wind Power: Energy generated by air flow, where large wind-turbines are spun by wind to generate electricity.

Geothermal Power: Energy generated by heat and steam produced by geological activity in the Earth’s crust. In most cases, this consists of pipes being placed in the ground above geologically active zones to channel steam through turbines, thus generating electricity.

Tidal Power: Energy generated by tidal harnesses located around shorelines. Here, the daily changes in tides causes water to flow back and forth through turbines, generating electricity that is then transferred to power stations along the shore.

Biomass: This refers to fuels that are derived from plants and biological sources – i.e. ethanol, glucose, algae, fungi, bacteria – that could replace gasoline as a fuel source.

Hydrogen: Energy derived from processes involving hydrogen gas. This can include catalytic converters, where water molecules are broken apart and reunited by electrolysis; hydrogen fuel cells, where the gas is used to power internal combustion engines or heated and used to spin turbines; or nuclear fusion, where atoms of hydrogen fuse under controlled conditions to release incredible amounts of energy.

The Mega Ampere Spherical Tokamak (MAST) reactor at the Culham Centre for Fusion Energy (UK). Credit: CCFE

Alternative and Renewable Energy:

In many cases, alternative sources of energy are also renewable. However, the terms are not entirely interchangeable, owing to the fact that many forms of alternative energy rely on a finite resource. For instance, nuclear power relies on uranium or other heavy elements that must be mined.

Meanwhile, wind, solar, tidal, geothermal and hydroelectric power all rely on sources that are entirely renewable. The Sun’s rays are the most abundant energy source of all and, while limited by weather and diurnal patters, are perennial – and therefore inexhaustible from an industry standpoint. Wind is also a constant, thanks to the Earth’s rotation and pressure changes in our atmosphere.

Development:

Currently, alternative energy is still very much in its infancy. However, this picture is rapidly changing, owing to a combination of political pressure, worldwide ecological disasters (drought, famine, flooding, storm activity), and improvements in renewable energy technology.

For instance, as of 2015, the world’s energy needs were still predominantly provided for by sources like coal (41.3%) and natural gas (21.7%). Hydroelectric and nuclear power constituted 16.3% and 10.6%, respectively, while “renewables” (i.e. solar, wind, biomass etc.) made up just 5.7%.

In Denmark, wind power accounts for 28% of electrical production and is cheaper than coal power. Credit: denmark.dk

This represented a significant change from 2013, when the global consumption of oil, coal and natural gas was 31.1%, 28.9%, and 21.4%, respectively.  Nuclear and hydroelectric power made up 4.8% and 2.45, while renewable sources made up just 1.2%.

In addition, there has been an increase in the number of international agreements regarding the curbing of fossil fuel use and the development of alternative energy sources. These include the Renewable Energy Directive signed by the European Union in 2009, which established goals for renewable energy usage for all member states for the year of 2020.

Basically, the agreement stated that the EU fulfill at least 20% of its total energy needs with renewables by 2020, and that at least 10% of their transport fuels come from renewable sources by 2020. In November of 2016, the European Commission revised these targets, establishing that a minimum of 27% of the EUs energy needs come from renewables by 2030.

In 2015, the United Nations Framework Convention on Climate Change (UNFCCC) met in Paris to come up with a framework for greenhouse gas mitigation and the financing of alternative energy that would go into effect by 2020. This led to The Paris Agreement, which was adopted on December 12th, 2015 and opened for signatures on April 22nd (Earth Day), 2016, at the UN Headquarters in New York.

The Krafla a geothermal power station located i0n Iceland. Credit: Wikipedia Commons/Ásgeir Eggertsson

Several countries and states have also been noted fore their leadership in the field of alternative energy development. For instance, in Denmark, wind power provides up to 140% of the country’s demand for electricity, with the surplus being provided to neighboring countries like Germany and Sweden.

Iceland, thanks to its location in the North Atlantic and its active volcanoes, achieved 100% reliance on renewable energy by 2012 through a combination of hydroelectricity and geothermal power. In 2016, Germany’s policy of phasing out reliance on oil and nuclear power resulted in the country reaching a milestone on May 15th, 2016 – where nearly 100% of its demand for electricity came from renewable sources.

The state of California has also made impressive strides in terms of its reliance on renewable energy in recent years. In 2009, 11.6 percent of all electricity in the state came from renewable resources such as wind, solar, geothermal, biomass and small hydroelectric facilities. Thanks to multiple programs that encourage switching to renewable energy sources, this reliance increased to 25% by 2015.

Based on the current rates of adoption, the long-term prospects for alternative energy are extremely positive. According to a 2014 report by the International Energy Agency (IEA), photovoltaic solar power and solar thermal power will account for 27% of global demand by 2050 – making it the single largest source of energy. Similarly, a 2013 report on wind power indicated that by 2050, wind could account for up to 18% of global demand.

The IEA’s World Energy Outlook 2016 also claims that by 2040, natural gas, wind and solar will eclipse coal and oil as the predominant sources of energy. And some even go as far to say that – thanks to developments in solar, wind, and fusion power technology – fossil fuels will become obsolete by 2050.

As with all things, the adoption of alternative energy has been gradual. But thank to the growing problem of Climate Change and rising demand for electricity worldwide, the rate at which clean and alternative methods are being adopted has become exponential in recent years. Sometime during this century, humanity may reach the point of becoming carbon neutral, and not a moment too soon!

We have written many articles about alternative energy for Universe Today. Here’s What are the Different Types of Renewable Energy?, What is Solar Energy?, How Does a Wind Turbine Work?, Could the World Run on Solar and Wind Power?, Where does Geothermal Power Come From? and Compromises Lead to Climate Change Deal.

If you’d like more info on Alternative Energy, check out the Alternative Energy Crops in Space. And here’s a link to Alternative Energy Technologies to Control Climate Change.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Sources:

Hydraulic Pump Glitch Aborts NASA’s Hurricane MicroSat Fleet Launch to Dec. 15 – Live Coverage

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Monday’s (Dec. 12) planned launch of NASA’s innovative Cyclone Global Navigation Satellite System (CYGNSS) hurricane microsatellite fleet was aborted when a pump in the hydraulic system that releases the Pegasus air-launch booster from its L-1011 carrier aircraft failed in flight. UPDATE: launch delayed to Dec 15, story revised

NASA and Orbital ATK confirmed this afternoon that the launch of the Orbital ATK commercial Pegasus-XL rocket carrying the CYGNSS small satellite constellation has been rescheduled again to Thursday, Dec. 15 at 8:26 a.m. EST from a drop point over the Atlantic Ocean.

Late last night the launch was postponed another day from Dec. 14 to Dec. 15 to solve a flight parameter issue on the CYGNSS spacecraft. New software was uploaded to the spacecraft that corrected the issue, NASA officials said.

“NASA’s launch of CYGNSS spacecraft is targeted for Thursday, Dec. 15,” NASA announced.

“We are go for launch of our #Pegasus rocket carrying #CYGNSS tomorrow, December 15 from Cape Canaveral Air Force Station,” Orbital ATK announced.

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com

“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.

Despite valiant efforts by the flight crew to restore the hydraulic pump release system to operation as the L-1011 flew aloft near the Pegasus drop zone, they were unsuccessful before the launch window ended and the mission had to be scrubbed for the day by NASA Launch Director Tim Dunn.

The Pegasus/CYGNSS vehicle is attached to the bottom of the Orbital ATK L-1011 Stargazer carrier aircraft.

Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The hydraulic release system passed its pre-flight checks before takeoff of the Stargazer.

“Launch of the Pegasus rocket was aborted due to an issue with the launch vehicle release on the L-1011 Stargazer. The hydraulic release system operates the mechanism that releases the Pegasus rocket from the carrier aircraft. The hydraulic system functioned properly during the pre-flight checks of the airplane,” said NASA.

A replacement hydraulic pump system component was flown in from Mojave, California, and successfully installed and checked out. Required crew rest requirements were also met.

Technician works on Orbital ATK Pegasus XL rocket with NASA's CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Launch is slated for Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
Technician works on Orbital ATK Pegasus XL rocket with NASA’s CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Launch is slated for Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The one-hour launch window opens at 8:20 a.m and the actual deployment of the rocket from the L-1011 Tristar is timed to occur 5 minutes into the window at 8:26 a.m.

NASA’s Pegasus/CYGNUS launch coverage and commentary will be carried live on NASA TV – beginning at 7 a.m. EDT

You can watch the launch live on NASA TV at – http://www.nasa.gov/nasatv

Live countdown coverage on NASA’s Launch Blog begins at 6:30 a.m. Dec. 15.

Coverage will include live updates as countdown milestones occur, as well as video clips highlighting launch preparations and the flight.

A prelaunch program by NASA EDGE will begin at 6 a.m.

NASA’s Kennedy Space Center is also providing live coverage on social media at:

http://www.twitter.com/NASAKennedy

https://www.facebook.com/NASAKennedy

Orbital ATK is also providing launch and mission update at:
twitter.com/OrbitalATK

The weather forecast from the Air Force’s 45th Weather Squadron at Cape Canaveral has significantly increased to predicting a 90% chance of favorable conditions on Thursday, Dec. 15.

The primary weather concerns are for flight cumulus clouds.

The Pegasus rocket cannot fly through rain or clouds due to a negative impact and possible damage on the rocket’s thermal protection system (TPS).

In the event of a delay, the range is also reserved for Friday, Dec. 16 where the daily outlook remains at a 90% chance of favorable weather conditions.

Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA's CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Credit: Ken Kremer/kenkremer.com
Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA’s CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

After Stargazer takes off from the Skid Strip early Thursday around 6:30 a.m. EST, it will fly north to a designated drop point box about 126 miles east of Daytona Beach, Florida over the Atlantic Ocean. The crew can search for a favorable launch point if needed, just as they did Monday morning.

The drop box point measures about 40-miles by 10-miles (64-kilometers by 16-kilometers). The flight crew flew through the drop box twice on Monday, about a half an hour apart, as they tried to repair the hydraulic system by repeatedly cycling it on and off and sending commands.

“It was not meeting the prescribed launch release pressures, indicating a problem with the hydraulic pump,” said NASA CYGNSS launch director Tim Dunn.

“Fortunately, we had a little bit of launch window to work with, so we did a lot of valiant troubleshooting in the air. As you can imagine, everyone wanted to preserve every opportunity to have another launch attempt today, so we did circle around the race once, resetting breakers on-board the aircraft, doing what we could in flight to try to get that system back into function again.”

The rocket will be dropped for a short freefall of about 5 seconds to initiate the launch sewuence. It launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the trek to LEO.

Here’s a schematic of key launch events:

Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet.  Credit: Orbital ATK
Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet. Credit: Orbital ATK

The $157 million fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system will be delivered to low Earth orbit by the Orbital ATK Pegasus XL rocket.

The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.

Artist's concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space.  Credits: NASA
Artist’s concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space. Credits: NASA

Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago in April 2003 for the GALEX mission.

Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.

CYGNSS counts as the 20th Pegasus mission for NASA.

The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas. Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.

The solar panels measure 5 feet in length and will be deployed within about 15 minutes of launch.

The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's CYGNSS payload on board, being processed for launch on Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA’s CYGNSS payload on board, being processed for launch on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.

The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Extinction Alert: Stephen Hawking Says Our Technology Might Wipe Us Out

Professor Stephen Hawking enjoying a lighter moment. Image credit: Zero G

If you’re thinking of having yourself cryogenically suspended and awakened in some future paradise, you might want to set your alarm clock for no later than 1,000 years from now. According to the BBC, Stephen Hawking will be saying this much in the 2016 Reith Lectures – a series of lectures organized by the BBC that explore the big challenges faced by humanity.

In Hawking’s first lecture, which will be broadcast on February 26th on the BBC, Hawking covers the topic of black holes, whether or not they have hair, and other concepts about these baffling objects.

But at the end of the lecture, he responded to audience questions about humanity’s capacity for self destruction. Hawking said that 1,000 years might be all we have until we meet our demise at the hands of our own scientific and technological advances.

As we have become increasingly advanced both scientifically and technologically, Hawking says, we will be creating “new ways that things can go wrong.” Hawking mentioned nuclear war, global warming, and genetically engineered viruses as things that could cause our extinction.

Nuclear War

Through the Cold War, annihilation at the hands of our own nuclear weapons was a real danger. The threat of a nuclear launch in response to a real or perceived threat was real. The resulting retaliation and counter-retaliation was a risk faced by everyone on the planet. And the two superpowers had enough warheads between them to potentially wipe out life on Earth.

One nuclear explosion can ruin your whole day. Image: Andrew Kuznetsov, CC by 2.0
One nuclear explosion can ruin your whole day. Image: Andrew Kuznetsov, CC by 2.0

The USA and the USSR have reduced their stockpiles of nuclear weapons in recent decades, but there are still enough warheads around to wipe us out. The possibility of a rogue state like North Korea setting off a nuclear confrontation is still very real. By the time Hawking’s 1,000 year time-frame has passed, we’ll either have solved this problem, or we won’t be here.

Global Warming

Earth is getting warmer, and though the Earth has warmed and cooled many times in its history, this time we only have ourselves to blame. We’ve been inadvertently enriching our atmosphere with carbon since the Industrial Revolution. All that carbon is creating a nice insulating layer around Earth, as it traps heat that would normally radiate into space. If we reach some of the “tipping points” that scientists talk about, like the melting of permafrost and the subsequent release of methane, we could be in real trouble.

Global Mean Surface Temperature. Image: NASA, Goddard Institute for Space Studies
Global Mean Surface Temperature. Image: NASA, Goddard Institute for Space Studies

Different climate engineering schemes have been thought up to counteract global warming, like seeding the upper atmosphere with reflective molecules, and having fleets of ships around the equator spraying sea mist into the air to partially block out the sun. Or even extracting carbon from the atmosphere. But how realistic or effective those counter-measures might be is not clear.

Genetically Engineered Viruses

As a weapon, a virus can be cheap and effective. There’ve been programs in the past to develop biological weapons. The temptation to use genetic science to create extremely deadly viruses may prove too great.

Smallpox and Viral Hemorrhagic Fevers have been weaponized, and as our genetic manipulation abilities grow, it’s possible, or even likely, that somebody somewhere will attempt develop even more dangerous viral weapons. They may be doing it right now.

There’s a ban on viral weapons, called the Biological and Toxin Weapons Convention signed in 1972. But, not everybody has signed it.

Artificial Intelligence

Hawking never mentioned AI in his talk, but it fits in with the discussion. As our machines get smarter and smarter, will they deduce that the only chance for survival is to remove or reduce the human population? Who knows. But Hawking himself, as well as other thinkers, have been warning us that there may be a catastrophic downside to our achievements in AI.

A Google driverless car: Looks harmless, doesn't it? Image: Michael Shick http://creativecommons.org/licenses/by-sa/4.0
A Google driverless car: Looks harmless, doesn’t it? Image: Michael Shick http://creativecommons.org/licenses/by-sa/4.0

We may love the idea of driverless cars, and computer assistants like SIRI. But as numerous science fiction stories have warned us (Skynet in the Terminator series being my favorite,) it may be a small step from very helpful AI that protects us and makes our lives easier, to AI that decides existence would be a whole lot better without us pesky humans around.

The Technological Singularity is the point at which artificially intelligent systems “wake up” and become—more or less—conscious. These AI machines would start to improve themselves recursively, or build better and smarter machines. At this point, they would be a serious danger to humanity.

Drones are super popular right now. They flew off the shelves at Christmas, and they’re great toys. But once we start seeing drones with primitive but effective AI, patrolling the property of the wealthy, it’ll be time to start getting nervous.

Extinction May Have To Wait

As our scientific and technological prowess grows, we’ll definitely face new threats, just like Hawking says. But, that same progress may also protect us, or make us more resilient. Hawking says, “We are not going to stop making progress, or reverse it, so we have to recognise the dangers and control them. I’m an optimist, and I believe we can.” So do we.

Maybe you’ll be able to hit the snooze button after all.

Original Source: BBC News

Monster Cat 5 Hurricane Patricia Strongest Ever Recorded Menaces Millions in Mexico; Seen from ISS

“Hurricane #Patricia approaches #Mexico. It’s massive. Be careful” in this image taken by NASA astronaut Scott Kelly aboard the ISS on Oct. 23, 2015. Credit: NASA/Scott Kelly
More images and videos below[/caption]

Hurricane Patricia, the strongest storm in recorded history with winds exceeding 190 mph (305 km/h) is right now menacing millions in Mexico after suddenly intensifying with little warning over the past day, threatening widespread catastrophic destruction as it barrels towards frightened residents along the nations Pacific coast and makes landfall this evening, Friday, Oct. 23.

NASA astronaut Scott Kelly captured striking photos, above and below, of Hurricane Patricia this afternoon from aboard the International Space Station (ISS).

Other NASA and NOAA weather satellites are actively monitoring and measuring the strongest storm on the planet right now.

“Hurricane #Patricia approaches #Mexico. It’s massive. Be careful,” Kelly wrote on his twitter account with a pair of images taken from the ISS.

Patricia unexpectedly intensified quite rapidly to a Category 5 storm from a tropical storm in the space of just 24 hours from yesterday to today with the significant potential for loss of life and likely widespread catastrophic damage.

This morning Patricia had sustained winds of 190 mph (305 km/h) , on the Saffir-Simpson Hurricane Wind Scale, with gusts up to 235 mph. That’s comparable to an EF-4 tornado, but its much wider.

Weather forecasters say that unusually warm waters, possibly from the current El Niño weather pattern may be causing the rapid intensification of the storm to unprecedented power never before seen.

On Oct. 23 at 17:30 UTC (1:30 p.m. EDT) NASA's Terra satellite saw the eastern quadrant of Hurricane Patricia over Mexico and the storm's pinhole eye.  Credits: NASA's Goddard MODIS Rapid Response Team
On Oct. 23 at 17:30 UTC (1:30 p.m. EDT) NASA’s Terra satellite saw the eastern quadrant of Hurricane Patricia over Mexico and the storm’s pinhole eye. Credits: NASA’s Goddard MODIS Rapid Response Team

“Hurricane #Patricia looks menacing from @space_station. Stay safe below,” tweeted Kelly, who just broke the American record for most time spent in space.
Patricia is making landfall near the tourist resort of Puerto Vallarta, the town of Cuixmala and the city of Manzanillo along Mexico’s Pacific coast, as it slightly weakens to 165 mph (265 km/h) with destructive force.

Here is the latest Hurricane Patricia animation from NOAA:
rb_lalo-animated 102315

Patricia is the most powerful storm ever to make landfall and many millions live in its path that is expected to track eastwards across inland areas of Mexico and then move up into the United States at Texas with flooding rains.

The Mexican government has warned millions to take shelter to evacuate. Over 15000 tourists have been evacuated from Puerto Vallarta to other regions. But the effort was hampered since the airport has been closed.

Catastrophic destruction to homes, businesses and infrastructure is feared.

Some 10 to 20 inches of rain is expected along the coast, causing mudslides across Mexico.

Waves heights exceeding 30 feet are also expected.

Heavy rains and flash flooding will continue into the US with the heaviest downpours expected in Texas and Louisiana.

Hurricane Patricia on Oct. 23, 2015 from the National Hurricane Center
Hurricane Patricia on Oct. 23, 2015 from the National Hurricane Center

Here’s the 7 PM CDT advisory from the National Hurricane Center:

“EXTREMELY DANGEROUS HURRICANE PATRICIA MOVING FARTHER INLAND OVER SOUTHWESTERN MEXICO”

“The center of Hurricane Patricia was located near latitude 19.5 North, longitude 104.9 West. Patricia ismoving toward the north-northeast near 15 mph (24 km/h) and this motion is expected to continue with some increase in forward speed tonight and Saturday. On the forecast track, the center of Patricia should continue to move inland over southwestern Mexico.

Patricia is expected to move quickly north-northeastward across western and northern Mexico through Saturday.

Satellite images indicate that Patricia has continued to weaken, and maximum sustained winds are estimated to be near 160 mph (260 km/h) with higher gusts. Patricia is a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. Patricia is forecast to rapidly weaken over the mountains of Mexico and dissipate on Saturday.

Hurricane force winds extend outward up to 35 miles (55 km) from the center and tropical storm force winds extend outward up to 175 miles (280 km).

The estimated minimum central pressure is 924 mb (27.29 inches).”

Here’s a video of Hurricane Patricia from the ISS taken today, Oct 23, 2015.

Video caption: Outside the International Space Station, cameras captured dramatic views of Hurricane Patricia at 12:15 p.m. EDT on October 23, 2015 as the mammoth system moved north at about 10 mph, heading for a potentially catastrophic landfall along the southwest coast of Mexico sometime during the day, according to the National Hurricane Center. Packing winds of 200 miles per hour, Patricia is the strongest in recorded history in the southeastern Pacific Ocean. The National Hurricane Center says that once Patricia crosses the Mexican coast it should weaken quickly and dissipate Oct. 24 due to upper level winds and mountainous terrain, but likely will introduce copious amounts of rainfall to the Texas coast through the weekend. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hurricane Patricia approaches Mexico in this image taken by NASA astronaut Scott Kelly aboard the ISS on Oct. 23, 2015. Credit: NASA/Scott Kelly
Hurricane Patricia approaches Mexico in this image taken by NASA astronaut Scott Kelly aboard the ISS on Oct. 23, 2015. Credit: NASA/Scott Kelly

See EPIC Views of Rotating Earth Daily from NASA’s New DSCOVR Observatory Website

At long last, beautiful new high resolution views of the rotating Earth can be seen daily by everyone at a new NASA website – all courtesy of images taken by NASA’s EPIC camera on board the Deep Space Climate Observatory (DSCOVR) spacecraft. And as seen in the time-lapse animation above, they provide a wonderful new asset for students everywhere to learn geography that’s just a finger tip away!

The EPIC camera, which stands for Earth Polychromatic Imaging Camera (EPIC), is located a million miles away on the DSCOVR real time space weather monitoring satellite and is designed to take full disk color images of the sunlit side of our home planet multiple times per day.

The EPIC NASA images are literally just a finger tip away, after a 17 year wait to get the satellite into the launch queue since it was first proposed by former VP Al Gore. They are all easily viewed at NASA’s new EPIC camera website which went online today, Monday, October 19, 2015.

To see the daily sequence of rotating images, visit the EPIC website link: http://epic.gsfc.nasa.gov/

This EPIC image was taken on Oct.17 and shows the Australian continent and a portion of Asia.

EPIC image taken on Oct. 17, 2015 showing the continent of Australia and a portion of Asia. Credit: NASA
EPIC image taken on Oct. 17, 2015 showing the continent of Australia and a portion of Asia. Credit: NASA

An annotated guide map illustration identifying the visible land masses accompanies each EPIC image and follows along as the Earth rotates daily.

What a great geography learning tool for student classrooms worldwide!

Annotated guide map identifying the visible land masses accompanies each EPIC image. Credit: NASA
Annotated guide map identifying the visible land masses accompanies each EPIC image. Credit: NASA

DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that is managed by NOAA. The satellite and science instruments were provided by NASA and NOAA.

EPIC is a four megapixel CCD camera and telescope mounted on DSCOVR and orbiting around the L1 Lagrange Point – a neutral gravity point that lies on the direct line between Earth and the sun.

NASA says that once per day they will post “at least a dozen new color images of Earth acquired from 12 to 36 hours earlier” taken by the agency’s EPIC camera. The EPIC images will be stored in an archive searchable by date and continent.

The image sequence will show “the Earth as it rotates, thus revealing the whole globe over the course of a day.”

“The effective resolution of the DSCOVR EPIC camera is somewhere between 6.2 and 9.4 miles (10 and 15 kilometers),” said Adam Szabo, DSCOVR project scientist at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, in a statement.

“The color Earth images are created by combining three separate single-color images to create a photographic-quality image equivalent to a 12-megapixel camera. The camera takes a series of 10 images using different narrowband filters — from ultraviolet to near infrared — to produce a variety of science products. The red, green and blue channel images are used to create the color images. Each image is about 3 megabytes in size.”

EPIC will capture “a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere.”

Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014.  Credit: Ken Kremer/kenkremer.com
Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014. Credit: Ken Kremer/kenkremer.com

The couch sized probe was launched atop a SpaceX Falcon 9 on Feb. 11, 2015 from Cape Canaveral, Florida, to start the million mile journey to its deep space observation post at L1. The rocket was funded by the USAF.

The primary goal of the $340 million DSCOVR satellite is to monitor the solar wind and aid very important forecasts of space weather at Earth from L1.

L1 is located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the DSCOVR satellite orbits about that spot just like a planet.

The mission is vital because its solar wind observations are crucial to maintaining accurate space weather forecasts to protect US infrastructure such as power grids, aviation, planes in flight, all types of Earth orbiting satellites for civilian and military needs, telecommunications, ISS astronauts and GPS systems.

This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away.  Credit: NASA/NOAA
This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA

DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science.

It was also dubbed “Goresat.”

The probe was eventually resurrected and partially rebuilt at NASA Goddard Space Flight Center as a much more capable Earth science satellite that would also conduct the space weather observations.

But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard.

Thus the practical and teachable science and daily scenes of the gorgeously rotating Earth were lost – until now!

Former VP Al Gore was clearly delighted with today’s launch of NASA’s EPIC website in this pair of tweets:

“Today @NASA launched its site for #DSCOVR’s daily images. I look forward to seeing more from #DSCOVR,” tweeted Al Gore.

“DSCOVR’s site displaying new daily images of Earth from L1 was launched today! Congratulations to all those who made this happen!”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER will launch in February 2015 atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer/kenkremer.com
NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER launched in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com
NOAA/NASA/USAF Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room.  Probe will launch in February atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer - kenkremer.com
NOAA/NASA/USAF Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Probe launched in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com

Why Was September’s Lunar Eclipse So Dark?

First off, a huge thank you to everyone who made and sent their Danjon scale estimate of the totally-eclipsed Moon’s brightness to Dr. Richard Keen, University of Colorado atmospheric scientist. Your data were crucial to his study of how aerosols in Earth’s atmosphere and other factors influence the Moon’s appearance.

Grateful for your help, Keen received a total of 28 observations from 7 different countries.

Graphs created by Dr. Richard Keen plotting Danjon L values submitted by Universe Today readers and others that compare expected values (top curve) with observed values. The Moon was about half as bright during totality as expected with L=1.9. Credit: Dr. Richard A. Keen
Graph created by Dr. Richard Keen plotting Danjon L values submitted by Universe Today readers and others that compare predicted values (top curve) with observed values. The Moon was about half as bright during totality as expected with L=1.9. Credit: Dr. Richard A. Keen

Using the Danjon information and estimates of the Moon’s brightness using the reverse binocular method, Keen crunched the data and concluded that the Moon was about 0.6 L (Danjon) units darker than expected and 0.4 magnitude dimmer, a brightness reduction of 33%. This agrees well with my own observation and possibly yours, too. No wonder so many stars sparkled near the Moon that night.

Depending on how clear the atmosphere is, the Moon's color can vary dramatically from one eclipse to another. The numbers, called the Danjon Scale, will help you estimate the color of Sunday night's eclipse. Credit: Bob King
Lunar eclipse brightness is rated on the Danjon scale where “0” equals a dark gray totality and “4” a bright, coppery yellow. Credit: Bob King

I think it’s safe to say, most of us expected a normal or even bright totality. So why was it dark? Several factors were at play — one to do with the Moon’s location in Earth’s shadow, the other with a volcanic eruption and a third with long-term, manmade pollution.

During a perigee eclipse, the moon passes more deeply into Earth’s shadow compared to one that happens near apogee, when the moon is most distant from Earth. Moon distances not to scale and for illustration only. Credit: Bob King
During a perigean eclipse, the Moon passes more deeply into Earth’s shadow compared to one that happens near apogee, when the moon is most distant from Earth. Moon distances not to scale and for illustration only. Credit: Bob King

You’ll recall that the eclipse occurred during lunar perigee, when the Moon swings closest to Earth in its 27-day orbit. Being closer, it also tracked deeper into Earth’s umbra or inner shadow which narrows the farther back of the planet it goes. An apogean Moon (farthest from Earth) passes through a more tapered cone of darkness closer to the penumbra, where sunlight mixes with shadow. A Moon nearer Earth would find the umbral shadow roomier with the light-leaking penumbra further off in the distance.

Around midday on April 24, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of the ash and gas plume from Calbuco volcano in southern Chile. Credit: NASA
On April 24, 2015, NASA’s Terra satellite acquired this photo of the ash and gas plume from Calbuco volcano in southern Chile. Credit: NASA

But there’s more. Working independently, Steve Albers of NOAA and Brazilian astronomer Helio Vital suggested another reason: aerosols in the atmosphere. “Earth’s stratosphere is no longer completely clean of volcanic ashes,” said Vital in an e-mail communication. “In fact, lingering aerosols (ash, dust, sulfuric acid droplets) from the explosion of Calbuco five months ago may be to blame for that excessive darkening.”

With the lunar horizon in the foreground, the Earth passes in front of the Sun on September 27, 2015 in this simulation, revealing the red ring of sunrises and sunsets along the limb of the planet responsible for illuminating the Moon during the eclipse. The clarity of the stratosphere at eclipse time can greatly affect lunar brightness during totality. The Earth and Sun are in Virgo for observers on the Moon with the bright star Beta Virginis at top. Click to see the video. Credit: NASA's Scientific Visualization Studio
With the lunar horizon in the foreground, the Earth passes in front of the Sun on September 27, 2015 in this simulation, revealing the red ring of sunrises and sunsets along the limb of the planet responsible for illuminating the Moon during the eclipse. The clarity of the stratosphere at eclipse time can greatly affect lunar brightness during totality. The Earth and Sun are in Virgo for observers on the Moon with the bright star Beta Virginis at top. Click to see the video. Credit: NASA’s Scientific Visualization Studio

While much of the debris blasted into the stratosphere made for colorful sunsets in the southern hemisphere, some of that material has likely made its way to the northern hemisphere. Albers has noticed an increase in yellow and purple sunsets in his home town of Boulder in recent months, telltale signs of volcanic spew at play.

Forest fires that raged across the western states and Canadian provinces all spring and summer may also have contributed. Most of that smoke usually stays in the lower part of the atmosphere, but some may have found its way to the stratosphere, the very layer responsible for transmitting most of the sunlight that falls into Earth’s shadow and colors the moon.

Graph showing magnitude estimates of the Moon's brightness during totality using the reverse binocular method. The predicted magnitude was -1.7 (a little brighter than Sirius) vs. the observed -1.3. Credit: Dr. Richard A. Keen
Graph showing magnitude estimates of the Moon’s brightness during totality using the reverse binocular method. The predicted magnitude was -1.7 (a little brighter than Sirius) vs. the observed -1.3. Credit: Dr. Richard A. Keen

Sunlight has to pass through these light-absorbing minerals and chemicals on its way through the atmosphere and into Earth’s shadow. Less light means a darker moon during total eclipse. Coincidentally, much of the totally eclipsed Moon passed through the southern half of the umbra which “increased the effectiveness of the Calbuco aerosols (which are still more concentrated in the southern hemisphere than the northern) at dimming the light within the umbra,” writes Keen.

Oceanus Procellarum and Mare Imbrium are large, dark volcanic plains that contributed to the Moon's faintness and dark-hued totality. Credit: Bob King
Oceanus Procellarum and Mare Imbrium are large, dark volcanic plains that contributed to the Moon’s faintness and dark-hued totality. Credit: Bob King

It also so happened that the darkest part of the moon coincided with two vast, dark volcanic plains called Oceanus Procellarum (Ocean of Storms) and Mare Imbrium, artificially enhancing the overall gloom over the northern half of the Moon.

U.S. satellite-derived map of PM2.5 averaged over 2001-2006. Credit: Dalhousie University, Aaron van Donkelaar
U.S. satellite-derived map of PM2.5 (fine particulate matter which includes sulfates and soot) averaged over 2001-2006. Credit: Dalhousie University, Aaron van Donkelaar

Finally, the human hand may also have played a role in lunar color and brightness. The burning of coal and oil has caused a gradual increase in the amount of human-made sulfate aerosols in the atmosphere since the start of the industrial revolution. According to NASA, at current production levels, human-made sulfate aerosols are believed to outweigh the naturally produced sulfate aerosols. No surprise that the concentration of aerosols is highest in the northern hemisphere where most industrial activity is found.

Isn’t it fascinating that one blood-red Moon can tell us so much about the air we breathe? Thank you again for your participation!

US Braces for Cat 4 Hurricane as ‘Joaquin’ Barrels to East Coast and ULA Readies 100th Launch on Oct. 2: Watch Live

Video caption: This animation of images captured from September 29 to October 1, 2015 from NOAA’s GOES-East satellite shows Hurricane Joaquin become a major hurricane in the Bahamas. Credits: NASA/NOAA GOES Project

NEW JERSEY – A wide swath of the US East Coast is bracing for impact in the coming days as ‘Hurricane Joaquin’ strengthened to a major and dangerous Category 4 storm, today, Thursday, Oct. 1, as NASA and NOAA satellites keep constant watch as it barrels potentially towards tens of millions of coastal residents.

Joaquin is already packing winds exceeding 130 mph with even higher wind gusts as the storm continues to strengthen at this hour and the pressure is decreasing. See the latest Hurricane Joaquin animation and imagery from NASA and NOAA, above and below.

Meanwhile amidst the hurricane watch, launch preparations are underway by United Launch Alliance (ULA) for the firms 100th rocket blastoff on Friday morning, Oct. 2 from Cape Canaveral Air Force Station in Florida with an Atlas V booster as Joaquin nears the US eastern seaboard.

A ULA Atlas V is slated to lift off Friday from Cape Canaveral Air Force Station in Florida at 6:08 a.m. EDT with the Morelos-3 communications satellite for Mexico, before the hurricane gets closer to Florida.

The National Hurricane Center declared Joaquin had intensified into a massive Category 4 hurricane on the Saffir-Simpson Wind Scale, as of 2 PM EDT today, Oct. 1.

You can watch the launch on ULA’s live webcast starting at 5:48 a.m. Oct 2: http://www.ulalaunch.com

The governors of three states – New Jersey, Virginia and North Carolina – have already declared ‘States of Emergency’ in anticipation of potentially destructive winds, potentially life threatening drenching rains and floods, downed power lines and ocean rip currents with high waves in local areas.

Multiple NASA and NOAA satellites are intensively and continuously observing Joaquin, and are providing absolutely critical data to forecasters and government officials with the most current and best information available.

NASA’s GPM, Terra and NPP-Suomi satellites and NOAA’s GOES-East satellite are tracking Joaquin and have seen powerful thunderstorms today which indicates continued strengthening.

At this time we still don’t whether the US eastern seaboard will suffer a major hit but officials are taking no chances after suffering through Superstorm Sandy which caused many deaths, widespread power outages and billions and billions of dollars of damage – from which we are still recovering.

Joaquin is currently over The Bahamas in the Caribbean and is expected to make a sharp right turn on Friday Oct 2 and head northwards to the east coast and the Atlantic Ocean. It could start impacting the Carolinas and regions further north as soon as Sunday, Oct. 4, based on current forecasts, and drop double digits inches of torrential rainfall.

NASA-NOAA's Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) on Oct. 1 as it was strengthening from a Category 2 to a Category 3 hurricane. It’s now a Category 4. Imagery showed cloud top temperatures colder than -63F/-53C (yellow).  Credits: NRL/NASA/NOAA
NASA-NOAA’s Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) on Oct. 1 as it was strengthening from a Category 2 to a Category 3 hurricane. It’s now a Category 4. Imagery showed cloud top temperatures colder than -63F/-53C (yellow). Credits: NRL/NASA/NOAA

Its pounding the Bahamas right now and is creating a disaster with hurricane force winds and heavy rainfall, say weather forecasters, as it remains over the island for some 24 hours or more and may drop over 10 inches of rain.

But there is a very wide cone of uncertainly of where it could hit as the possible storm track extends from the Carolinas to Maine. It may or may not directly impact the eastern US. The storm may shift to the right and spare the east coast. But no one knows at this time.

Some areas on the US East coast stretching from Virginia to Maine have already suffered from torrential rains and severe flooding from an unrelated storm the past few days and also right now today, Thursday.

So the grounds are already saturated in parts of the Carolina’s, Virginia, Maine and elsewhere.

NASA/JAXA's GPM satellite provided a 3-D side view of Tropical Storm Joaquin on Sept. 29 showing the internal precipitation structure. The areas in blue are frozen precipitation. Areas in green and red are liquid precipitation.  Credits: Scientific Visualization Studio, NASA’s Goddard Space Flight Center
NASA/JAXA’s GPM satellite provided a 3-D side view of Tropical Storm Joaquin on Sept. 29 showing the internal precipitation structure. The areas in blue are frozen precipitation. Areas in green and red are liquid precipitation. Credits: Scientific Visualization Studio, NASA’s Goddard Space Flight Center

Coastal flood warnings and watches are already in effect in many areas along the eastern seaboard where local areas could be drenched by some 12 to 18 inches of additional rain which could fall even before the hurricane hits.

Significant beach erosion has already occurred in the Carolinas over the past few days and more is expected up and down the entire coast up to Maine.

And 10 foot high defense berms of sand are being constructed at this moment along miles and miles of the Jersey Shore – areas that suffered devastating damage from Superstorm Sandy.

There is a potential risk of deadly flooding, flash flooding and damage to houses, buildings, businesses, roadways and infrastructure.

“At 2 p.m. EDT (1800 UTC), the center of Hurricane Joaquin was located near latitude 23.0 North, longitude 74.2 West. Joaquin was moving generally southwestward at about 6 mph (9 kph), and the National Hurricane Center forecast a turn toward the northwest and north on Friday, Oct. 2. On the forecast track, the center of Joaquin will move near or over portions of the central Bahamas today and tonight and pass near or over portions of the northwestern Bahamas on Friday, Oct. 2,” according to NASAs Rob Gutro.

The weather forecast for Friday’s launch from Cape Canaveral , Florida is currently 70 percent GO for liftoff of the United Launch Alliance Atlas V rocket at 6:08 a.m. EDT. The Atlas V will launch with the Morelos-3 mission for Mexico’s Secretaria de Comunicaciones y Transportes (Ministry of Communications and Transportation).

Morelos-3 will be part of the Mexsat constellation of satellites that delivers advanced telecommunications throughout Mexico.

United Launch Alliance Atlas V rocket after rollout to Pad 41 at Cape Canaveral Air Force Station, Florida for planned Oct. 2 launch at 6:08 a.m. EDT with the Morelos-3 mission for Mexico’s Ministry of Communications and Transportation.  In progress assembly of the commercial crew access tower is seen at right, now under construction for the Boeing Starliner space taxi for astronaut crews launching to the ISS. Credit: Julian Leek
United Launch Alliance Atlas V rocket after rollout to Pad 41 at Cape Canaveral Air Force Station, Florida for planned Oct. 2 launch at 6:08 a.m. EDT with the Morelos-3 mission for Mexico’s Ministry of Communications and Transportation. In progress assembly of the commercial crew access tower is seen at right, now under construction for the Boeing Starliner space taxi for astronaut crews launching to the ISS. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance Atlas V rocket during rollout to Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida on Oct. 1 for planned Oct. 2 launch at 6:08 a.m. EDT with the Morelos-3 mission for Mexico’s Ministry of Communications and Transportation.  Credit: Julian Leek
United Launch Alliance Atlas V rocket during rollout to Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida on Oct. 1 for planned Oct. 2 launch at 6:08 a.m. EDT with the Morelos-3 mission for Mexico’s Ministry of Communications and Transportation. Credit: Julian Leek