The Story of the Apollo Guidance Computer, Part 3

During the development of the Apollo Guidance Computer (AGC) by the MIT Instrumentation Laboratory (see Part 1 and Part 2 for the complete backstory), an inauspicious event occurred sometime during 1965-1966, while the Gemini missions were going on.

The Gemini program helped NASA get ready for the Apollo Moon landings missions by testing out rendezvous and other critical techniques and technologies. Ten crews flew missions in Earth orbit on the two-person Gemini spacecraft.

Continue reading “The Story of the Apollo Guidance Computer, Part 3”

The Story of the Apollo Guidance Computer, Part 2

In the late 1950’s, before NASA had any intentions of going to the Moon – or needing a computer to get there — the MIT Instrumentation Laboratory had designed and built a small prototype probe they hoped would one day fly to Mars (read the background in part 1 of this story here).  This little probe used a small, rudimentary general-purpose computer for navigation, based on the inertial systems for ballistic missiles, submarines, and aircraft the Lab had designed and built for the military since World War II.

Continue reading “The Story of the Apollo Guidance Computer, Part 2”

Chris Kraft, Legendary NASA Flight Director, Dies at 95

The man known as the ‘father of flight control’ – Christopher C. Kraft, Jr.  – has died at the age of 95. Kraft joined the NASA Space Task Group in November 1958 and became the first flight director. He created the concepts of mission planning, and real-time monitoring and control for the first U.S. crewed spaceflight missions and became a driving force in the U.S. space program.

Continue reading “Chris Kraft, Legendary NASA Flight Director, Dies at 95”

The Story of the Apollo Guidance Computer, Part 1

Dick Battin stood on his driveway in the New England frosty pre-dawn back in October 1957, straining his eyes to see Sputnik fly overhead. It was amazing. Watching that little point of light scoot silently across the sky made Battin’s heart pound. A human-made hunk of metal was actually orbiting Earth!

Walking back to his house, Battin’s mind raced. Oh, how he wished he’d never left the MIT Instrumentation Laboratory a year and a half ago. He’d regretted it since the day he decided to move on to what he thought were greener pastures. But now, his regret became a steadfast resolve to somehow get back to the Lab again, because he knew – he was absolutely certain without a doubt – that Doc Draper would be getting his hand in this new venture of space exploration. And Battin wanted in, too.

Continue reading “The Story of the Apollo Guidance Computer, Part 1”

“Eight Years to the Moon:” Read a Book Excerpt

Editor’s note: Eight Years to the Moon: The History of the Apollo Missions” is a new book, just out today, written by Universe Today’s Nancy Atkinson, with a foreword by Apollo 9 astronaut Rusty Schweickart. The book tells the unique personal stories of over 60 engineers and scientists who worked behind the scenes to make the Apollo program possible, and is filled with stories of the dedication and perseverance it took to overcome the challenges, hurdles and conflicts of doing things that had never been done before. The stories are fun, heart-warming and heart-breaking and they provide a glimpse into the lives of some of the hundreds of thousands of people who made it possible to land humans on the Moon. Read an excerpt of Chapter 1 here on Universe Today:

Continue reading ““Eight Years to the Moon:” Read a Book Excerpt”

Climate Change Q & A with Bear Grylls

Bear Grylls isn’t a climate scientist, but in his travels around the world as an adventurer, survivalist and host of numerous nature shows, he has witnessed firsthand our planet’s changing climate.

This is especially true in a new series Grylls hosts and narrates on the National Geographic channel called “Hostile Planet.” While the show does not focus on climate change per se, it doesn’t shy away from portraying how our world is rapidly changing and how those changes affect various animal species.

Continue reading “Climate Change Q & A with Bear Grylls”

What Neil Armstrong’s Sons Really Think About the Movie “First Man”

Like millions of other people around the world, on July 20, 1969, Rick and Mark Armstrong watched Apollo 11’s moon landing on the television set in their living room. But for those two boys – aged 12 and 6 at the time – it was their Dad who was taking humanity’s first steps on another world 49 years ago.

And now that new generations will be able to experience Neil Armstrong’s historic steps through the new movie First Man, the Armstrong boys are extremely happy and pleased that people will get to know their father as they know and remember him, instead of the way he has been characterized over the years.
Continue reading “What Neil Armstrong’s Sons Really Think About the Movie “First Man””

What is the Perfect Gift for Every Space Enthusiast? The Year in Space Calendar 2018!

What is the most wonderful time of the year? In my opinion, it is when the new Year In Space Calendars come out! This is our most-recommended holiday gift every year and whether it’s the gigantic wall calendar or the spiral-bound desk calendar, the 2018 versions don’t disappoint. They are full of wonderful color images, daily space facts, and historical references. These calendars even show you where you can look in the sky for all the best astronomical sights.

These calendars are the perfect gift every space enthusiast will enjoy all year.

The 2018 Year in Space Wall Calendar. Courtesy Steve Cariddi.

The gorgeous wall calendar has over 120 crisp color images and is larger, more lavishly illustrated, and packed with more information than any other space-themed wall calendar. It’s a huge 16 x 22 inches when hanging up.

The Year In Space calendars take you on a year-long guided tour of the Universe, providing in-depth info on human space flight, planetary exploration, and deep sky wonders. You’ll even see Universe Today featured in these calendars 🙂

The Year in Space calendars normally sell for $19.95, but Universe Today readers can buy the calendar for only $14.95 or less, with additional discounts that appear during checkout if you buy more than 1 copy at a time. Check out all the details here.

A close look at the 2018 Year in Space Wall Calendar. Courtesy Steve Cariddi.

Other features of the Year In Space calendar:
– Background info and fun facts
– A sky summary of where to find naked-eye planets
– Space history dates
– Major holidays (U.S. and Canada)
– Daily Moon phases
– A mini-biography of famous astronomer, scientist, or astronaut each month

The spiral bound desk calendar. Image courtesy Steve Cariddi.

The 136-Page Desk Calendar is available at a similar discounts. The desk calendar also includes a Monthly Sky Summary, which is a handy month-by-month list of what’s visible in the night sky, such as conjunctions, meteor showers, eclipses, planet visibility, and more. Plus there’s information on planetary exploration, including a comprehensive look at what to expect from the many planetary missions taking place in the year ahead.

Preview the calendars on the Year In Space website, where you can also get a direct link to Amazon. Because all shipping is handled through Amazon this year, currently calendars can only ship to US addresses.

I Still ♥ the ISS: More Reasons to Love the International Space Station

Back in 2008, I professed my feelings, bared my soul and told all about how I absolutely was in love the International Space Station. Nine and a half years ago when I wrote that article, titled “I ‘Heart’ the ISS: Ten Reasons to Love the International Space Station,” the ISS was still under construction, only three astronauts/cosmonauts at a time could live on board, and scientific research was sparse. Some people routinely questioned the cost and utility of what some people called an expensive erector set or orbiting white elephant.

But now, construction has been complete for several years, six crew members are usually aboard, and there are three fully outfitted laboratory modules that contain fourteen internal research facilities and twelve facilities outside the station. The ISS is the largest, most complex international engineering project in history, built by fifteen countries around the world. They had to – and continue to — work across differences in language, units of measure and political agendas.

A timelapse photo taken by Don Pettit on the International Space Station. Credit: Don Pettit/NASA

The ISS is an engineering and technical marvel for not only its nearly flawless construction — every piece fit together perfectly — but also for its relatively trouble-free operation. It’s become a certified US National Laboratory, conducting ground-breaking research across multiple disciplines. It serves as a unique educational and inspirational platform for people around the world.

But one thing has not changed: I still love the ISS. And today, as we celebrate 17 years of humans continuously living and working off our home planet, here are ten more reasons to love the ISS:

Seen here on a spacewalk in March 2017, NASA astronaut Peggy Whitson holds the record for most spacewalks conducted by a female astronaut. Credits: NASA

1. The Humans: The astronauts and cosmonauts on board the ISS put the ‘human’ in human spaceflight. They can do the science, make the observations and share the experience unlike any robotic mission. The personalities of each crew give a unique flavor to each Expedition (we’re currently up to Expedition #53). While astronauts like Chris Hadfield, Peggy Whitson and Scott Kelly have become uber-famous for their unique stints aboard the ISS, over 200 humans have visited and over 100 people from 10 different countries have lived and worked on board. As of today, there has been a cumulative consecutive 6,210 days of humans in orbit on the ISS.

Japanese astronaut Koichi Wakata plays around wiith humanoid robot Robonaut 2 during Expedition 39 in March 2014. Credit: NASA

2. Robots: Oh yes, we’ve got robots on board too! Robonaut is human-shaped robot working towards taking over simple human tasks like flipping switches and other maintenance, SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) are like Jedi training spheres that are testing several different space technologies; Japan’s super-cute JEM Internal Ball Camera can monitor space station activities and functions.

JAXA’s JEM Internal Ball Camera, or “Int-Ball” for short, floats while taking a video, July 2017. Credit: NASA.

Canadarm 2 is a 17.6 meter (57.7 feet) -long robotic arm on the station’s exterior that was instrumental in building the ISS; it can handle large payloads and is now used to dock visiting resupply ships. Dextre is Canada’s large robot that’s been described as a “robotic handyman” that does work outside the space station. Next year a new robot called Astrobee will come on board; it’s a cube-shaped robot packed with sensors, cameras, computers, and a propulsion system and is designed to help astronauts around the ISS with a variety of tasks. All these robots will help lead us to real versions of R2D2, C3PO and BB-8.

In November 2014, NASA astronaut Butch Wilmore installed a 3-D printer made by Made in Space in the Columbus laboratory’s Microgravity Science Glovebox on the International Space Station. Credit: NASA TV

3. There’s a 3-D printer on board: 3-D printing has taken off on Earth for all sorts of applications and the 3-D printer on the ISS could help pave the way for future long-term space expeditions. The Additive Manufacturing Facility (AMF) from the company Made In Space has printed tools for use on the station, and NASA is even looking at printing food in space. It’s the first version of the Star Trek replicator, and can help solve the logistics problem of having spares for every single nut and bolt, enabling repairs and being able to solve unanticipated problems in space where there are no hardware stores.

4. Science! Hundreds of experiments conducted on board the ISS have changed science both off and on our world. Experiments include fields as diverse as microbiology, space science, fundamental physics, astronomy, meteorology and Earth observation to name a few. Every week, I receive a detailed email from the ISS Program Science Office, explaining the diverse experiments and unique results from research in space. Like on Earth, not all research in space is headline-making and world changing, and science takes time. As Peggy Whitson said, “like research on the ground, it takes many years to get a final answer but each step is important.”

The continued research on the ISS is producing unique science results, space technology spinoffs, and other technologies that are saving lives around the world. Studies have allowed for advances in water monitoring and filtering, fire prevention, particle and colloidal studies, and nanomaterials that are providing innovations in industry.

The Center for the Advancement of Science in Space (CASIS) manages the ISS National Lab, and they have has partnered with academic researchers, government organizations, startups and major commercial companies to take advantage of the unique microgravity lab.

Big experiments include the Alpha Magnetic Spectrometer that is looking for dark matter, and antimatter and cosmic rays; and the Cold Atom Laboratory (CAL) is an experimental instrument set to launch next year that will create extremely cold conditions in the microgravity environment of the ISS leading to the formation of Bose Einstein Condensates that are a magnitude colder than those that are created in laboratories on Earth.

Building the ISS itself has led to advances in engineering and all the activities on board enhance our ability to explore space and one day set off on journeys that will take humans out into the solar system.

Here’s a video that explains in detail some of the top research results from the ISS:

NASA astronaut Kate Rubins not only became the first person to sequence DNA in space, but the sequenced more than a billion bases during her time aboard the space station. Credits: NASA

5. More science, for the betterment of humanity’s health. One of the main areas of focus is life sciences. Studying the effects of microgravity on astronauts provides insight into human physiology, and how it evolves or erodes in space, and those studies can be used directly to help solve medical problems here on Earth. Investigations have been aimed at studying cancer cells, bone density and osteoporosis, heart disease, eye sight issues, as well as and examining ways to enhance pharmaceuticals.

Last year, DNA was successfully sequenced aboard the ISS, and this opens a whole new world of scientific and medical possibilities. Scientists consider it a game changer.

Expedition 24’s Tracy Caldwell Dyson gazes out of the cupola. Credit: NASA

6. The Cupola and orbital perspective. Seeing Earth from space can be life changing, and even just seeing the incredible pictures and videos from the ISS astronauts can give us the big picture and a long-term view of our world that we can’t get otherwise. Books like Frank White’s “The Overview Effect” and ISS astronaut Ron Garan’s “The Orbital Perspective” have talked in detail about the impact of seeing our world as a whole, and how it can show us, as Garan said, “both the good and bad of our daily decisions, words, and actions.”

Additionally, Earth observations can help in studying climate and and Earth’s physical, biological and chemical systems.

Also, you can see that the Earth is not flat.

You can watch live views of the Earth from the ISS with ISS HD Viewing Experiment Camera here.

7. International cooperation. This is one of the benefits of space exploration: people from different countries and faiths can learn to live together in peace and harmony. While space exploration started as more of a competition, as NASA historian Steven J. Dick has said, “political and funding realities have now shifted the balance toward cooperation.”

The ISS is the result of unprecedented scientific and engineering collaboration among five space agencies. I’ll just reiterate what I wrote in 2008: In a world where violence and political animosity floods the daily news, it’s incredible that this structure in space was quietly built by 15 different countries working together in relative harmony. If not for the international partners, the ISS probably wouldn’t have gotten off the ground, former NASA Administrator Mike Griffin has said, adding that that the station’s most enduring legacy is the international partnership that created it.

“Space is without borders, we fly to an international space station where we do experiments that come back to Earth and benefit all of us — they benefit all humankind,” said German ISS astronaut Alexander Gerst.

8. Longevity: The ISS is an incredible feat of engineering, and its 15 pressurized modules and many other components are working so well in space that the goalposts for station’s life has been extended several times. 2028 is that latest estimate and goal for how long the ISS will be operational. It won’t last forever, though, as some components have been in space since 1998. It took a dozen years and more than 30 missions to assemble. It is the result of unprecedented scientific and engineering collaboration.

A montage of 31 images taken in less than a second as the International Space Station transits the Sun and a solar prominence. Credit and copyright: Thierry Legault.

9. You can see it for yourself, and its brighter than ever. One of the most amazing things about the ISS is that you can watch it orbit over your backyard. This 460-ton, football-field-size permanently crewed platform orbits 240 miles above Earth, going around every 90 minutes. I still see people’s jaws drop and eyes widen in wonder when they see for the first time, as it glides silently and swiftly across the night or early morning sky. I never tire of observing it. Find out when the station will fly over your backyard at NASA’s Spot the Station website or at the Heaven’s Above website.

10. Construction is complete. We did it. We built this incredible structure in space, together. Yes, it was expensive, about $100 billion. But it was ambitious, audacious and unprecedented and it has been an unequivocal success. It will lead us to the future of space exploration, hopefully extending and protecting life on Earth. It’s an international mission that is truly for all humankind.

First Cosmic Event Observed in Both Gravitational Waves and Light

About 130 million years ago, in a galaxy far away, two neutron stars collided. The cataclysmic crash produced gravitational waves, ripples in the fabric of space and time. This event is now the 5th observation of gravitational waves by the Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo collaboration, and the first detected that was not caused by the collision of two black holes.

But this event — called a kilonova — produced something else too: light, across multiple wavelengths.

For the first time in history, an astronomical phenomenon has been first observed through gravitational waves and then seen with telescopes. In an incredibly collaborative effort, over 3,500 astronomers using 100 instruments on over 70 telescopes around the world and in space worked with physicists from the LIGO and Virgo collaboration.

Scientists call this “multimessenger astronomy.”

“Together, all these observations are bigger than the sum of their parts,” said Laura Cadonati, LIGO’s Deputy Spokesperson at a briefing today. “We are now learning about the physics of the universe, about the elements we are made of, in a way that no one has ever done before.”

Observations of the kilonova. Credit: P.K. Blanchard/ E. Berger/ Pan-STARRS/DECam.

“It will give us insight into how supernova explosions work, how gold and other heavy elements are created, how the nuclei in our body works and even how fast the universe is expanding,” said Manuela Campanelli, from the Rochester Institute of Technology. “Multimessenger astronomy demonstrates how we can combine the old way with the new. It has changed the way astronomy is done.”

Neutron stars are the crushed leftover cores of massive stars that long ago exploded as supernovae. The two stars, located near each other in a galaxy called NGC 4993, started out between 8-20 times the mass of our sun. Then with their supernovas, each condensed down to about 10 miles in diameter, the size of a city. These are stars composed entirely of neutrons and are in-between normal stars and black holes in size and density — just a teaspoon of neutron star material would weigh 1 billion tons.

They spun around each other in a cosmic dance until their mutual gravity caused them to collide. That collision produced a fireball of astronomical proportions and the repercussions of that event arrived at Earth 130 million years later.

“While this event took place 130 million years ago, we only found out about this on Earth on August 17, 2017, just before the solar eclipse,” said Andy Howell from the Las Cumbres Observatory, speaking at a press briefing today. “We’ve been keeping this secret the whole time and we’re about to bust!”

At 8:41 am EDT, LIGO and Virgo felt the early tremors of the ripples of spacetime, gravitational waves. Just two seconds later, a bright flash of gamma rays was detected by NASA’s Fermi space telescope. This allowed researchers to quickly pinpoint the direction from which the waves were coming.

Alerted by an Astronomers Telegram, thousands of astronomers around the world scrambled to make observations and begin collecting additional data from the neutron star merger.

This animation shows how LIGO, Virgo, and space- and ground-based telescopes zoomed in on the location of gravitational waves detected August 17, 2017 by LIGO and Virgo. By combining data from the Fermi and Integral space missions with data from LIGO and Virgo, scientists were able to confine the source of the waves to a 30-square-degree sky patch. Visible-light telescopes searched a large number of galaxies in that region, ultimately revealing NGC 4993 to be the source of gravitational waves.

“This event has the most precise sky localization of all detected gravitational waves so far,” Jo van den Brand, spokesperson for the Virgo collaboration, said in a statement. “This record precision enabled astronomers to perform follow-up observations that led to a plethora of breathtaking results.”

This provides the first real evidence that light and gravitational waves travel at the same speeds – near the speed of light — as Einstein predicted.

The kilonova became red and faded by a factor of over 20 in just a few days. This rapid change was captured by Las Cumbres Observatory telescopes as night time moved around the globe. Credit: Sarah Wilkinson / LCO.

Observatories from the very small to the most well-known were involved, quickly making observations. While bright at first, the event faded in less than 6 days. Howell said the observed light was 2 million times brighter than the Sun over the course of the first few hours, but it then faded over a few days.

The Dark Energy Camera (DECam), which is mounted on the Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory in the Chilean Andes was one of the instruments that helped localize the source of the event.

“The challenge that we face every time that the LIGO collaboration issues a new observational trigger is how do we search for a source that is rapidly fading, was possibly faint to begin with, and is located somewhere over there,” said Marcelle Soares-Santos, from Brandeis University at the briefing. She is the first author on the paper describing the optical signal associated with the gravitational waves. “It’s the classical challenge of finding a needle in a haystack with the added complication that the needle is far away and haystack is moving.”

With the DECam, they were quickly able to determine the source galaxy, and rule out 1,500 other candidates that were present in that haystack.

“Things that look like these ‘nneedles’ are very common, so we need to make sure we have the right one. Today, we are certain we have,” Soares-Santos added.

In the very small department, a small robotic 16-inch telescope called PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescope) — which astronomer David Sand from the University of Arizona described at “basically a souped-up amateur telescope,” — also helped determine the source. Sand said this proves that even small telescopes can play a roll in multimessenger astronomy.

The well known is led by Hubble and several other NASA and ESA space observatories, such as the Swift, Chandra and Spitzer missions. Hubble captured images of the galaxy in visible and infrared light, witnessing a new bright object within NGC 4993 that was brighter than a nova but fainter than a supernova. The images showed that the object faded noticeably over the six days of the Hubble observations. Using Hubble’s spectroscopic capabilities the teams also found indications of material being ejected by the kilonova as fast as one-fifth of the speed of light.

On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo Interferometer both detected gravitational waves from the collision between two neutron stars. Within 12 hours observatories had identified the source of the event within the lenticular galaxy NGC 4993, shown in this image gathered with the NASA/ESA Hubble Space Telescope. The associated stellar flare, a kilonova, is clearly visible in the Hubble observations. This is the first time the optical counterpart of a gravitational wave event was observed. Hubble observed the kilonova gradually fading over the course of six days, as shown in these observations taken in between 22 and 28 August (insets). Credit: NASA and ESA. Acknowledgment: A.J. Levan (U. Warwick), N.R. Tanvir (U. Leicester), and A. Fruchter and O. Fox (STScI).

“This is a game-changer for astrophysics,” said Howell. “A hundred years after Einstein theorized gravitational waves, we’ve seen them and traced them back to their source to find an explosion with new physics of the kind we only dreamed about before.”

Here are just a few of insights this single event created, using multimessenger astronomy:

* Gamma rays: These flashes of light are now definitively associated with merging neutron stars and will help scientists figure out how supernova explosions work, explained Richard O’Shaughnessy, also from Rochester Institute of Technology and a member of the LIGO team. “The initial gamma-ray measurements, combined with the gravitational-wave detection, further confirm Einstein’s general theory of relativity, which predicts that gravitational waves should travel at the speed of light,” he said.

* The source of gold and platinum: “These observations reveal the direct fingerprints of the heaviest elements in the periodic table,” said Edo Berger, from the Harvard Smithsonian Center for Astrophysics, speaking at the briefing. “The collision of the two neutron stars produced 10 times of mass of Earth in gold and platinum alone. Think about how as these materials are flying out of this event, they eventually combine with other elements to form stars, planets, life … and jewelry.”

Berger added something else to think about: the original supernova explosions of these stars produced all the heavy elements up to iron and nickel. Then in the kilonova in this one system, we can see the complete history of how the periodocial table of the heavy elements came into being.

Howell said that when you split the signatures of the heavy elements into a spectrum, you create a rainbow. “So there really was a pot of gold at the end of the rainbow, at least a kilonova rainbow,” he joked.

* Nuclear physics astronomy: “Eventually, more observations like this discovery will tell us how the nuclei in our body works,” O’Shaughnessy said. “The effects of gravity on neutron stars will tell us how big balls of neutrons behave, and, by inference, little balls of neutrons and protons — the stuff inside of our body that makes up most of our mass”; and

* Cosmology:- “Scientists now can independently measure how fast the universe is expanding by comparing the distance to the galaxy containing the bright flare of light and distance inferred from our gravitational wave observation,” said O’Shaughnessy.

“The ability to study the same event with both gravitational waves and light is a real revolution in astronomy,” said astronomer Tony Piro from the CfA. “We can now study the universe with completely different probes, which teaches things we could never know with only one or the other.”

“For me, what made this event so amazing is that not only did we detect gravitational waves, but we saw light across the electromagnetic spectrum, seen by 70 observatories around the world,” said David Reitz, scientific spokesman for LIGO, at today’s press briefing. “This is the first time the cosmos has provided to us the equivalent of movies with sound. The video is the observational astronomy across various wavelengths and the sound is gravitational waves.”

Sources: Las Cumbres Observatory, Hubble Space Telescope, Rochester Institute of Technology, Kilonova.org, CfA,, press briefing.