After Stalling Out for 40 Years, the Largest Iceberg in the World is on the Move

An animation from Copernicus Sentinel-1 images shows iceberg A23a’s movements from 2 November 2023, 14 November 2023 and 26 November 2023. Credit: ESA.

In 1986, a gigantic iceberg separated from the Fichner-Ronne ice shelf in West Antarctica. It was so big that it became grounded, stuck to the seafloor, and remained in position for 40 years. Finally, it has now been pushed off the seafloor and has begun drifting in the Weddell Sea to a region in the South Atlantic called Iceberg Alley. Designated A23a, this monster berg measures 4000 sq km (1,500 square miles) and is about 400 meters (1,300 feet) thick – the world’s largest.

Continue reading “After Stalling Out for 40 Years, the Largest Iceberg in the World is on the Move”

Vera Rubin Will Generate a Mind-Boggling Amount of Data

The LSST, or Vera Rubin Survey Telescope, under construction at Cerro Pachon, Chile. Image Credit: LSST

When the Vera C. Rubin Observatory comes online in 2025, it will be one of the most powerful tools available to astronomers, capturing huge portions of the sky every night with its 8.4-meter mirror and 3.2-gigapixel camera. Each image will be analyzed within 60 seconds, alerting astronomers to transient events like supernovae. An incredible five petabytes (5,000 terabytes) of new raw images will be recorded each year and made available for astronomers to study.

Not surprisingly, astronomers can’t wait to get their hands on the high-resolution data. A new paper outlines how the huge amounts of data will be processed, organized, and disseminated. The entire process will require several facilities on three continents over the course of the projected ten-year-long survey.

Continue reading “Vera Rubin Will Generate a Mind-Boggling Amount of Data”

The New Asteroid Moon Discovered by Lucy Just Got its Own Name

Asteroid Dinkinesh and its satellite companions, the "kissing moons". These appear to be a contact binary. Courtesy NASA/JPL/SWRI
Asteroid Dinkinesh and its satellite companions, the "kissing moons" now named Selam. The moon is a contact binary. Courtesy NASA/JPL/SWRI

When NASA’s Lucy mission flew past asteroid Dinkinesh on November 1, 2023, it made the surprising discovery the asteroid had a tiny moon. Then came another surprise. This wasn’t just any moon, but a contact binary moon, where two space rocks are gently resting against each other. Of course, this new and unique moon needed a name, so the International Astronomical Union (IAU) has just approved approved “Selam,” which means peace in Ethiopia’s language.

But, everything’s connected here. Dinkinesh is the Ethiopian name for the Lucy fossil, and Selam is named after another fossil from the same species of human ancestor.

Continue reading “The New Asteroid Moon Discovered by Lucy Just Got its Own Name”

A Protoplanetary Disc Has Been Found… in Another Galaxy!

With the combined capabilities of ESO’s Very Large Telescope (VLT) and the Atacama Large Millimeter/submillimeter Array (ALMA), a disc around a young massive star in another galaxy has been observed. The image at the centre shows the jets that accompany it. The top part of the jet is aimed slightly towards us and thus blueshifted; the bottom one is receding from us and thus redshifted. Observations from ALMA, right, then revealed the rotating disc around the star, similarly with sides moving towards and away from us. Credit: ESO/ALMA (ESO/NAOJ/NRAO)/A. McLeod et al.

Astronomers have imaged dozens of protoplanetary discs around Milky Way stars, seeing them at all stages of formation. Now, one of these discs has been found for the first time — excitingly — in another galaxy. The discovery was made using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile along with the , which detected the telltale signature of a spinning disc around a massive star in the Large Magellanic Cloud, located 160,000 light-years away.

Continue reading “A Protoplanetary Disc Has Been Found… in Another Galaxy!”

There are Mysterious Polygons Beneath the Surface of Mars

China's Zhurong rover on Mars
An image from China's Zhurong rover shows spacecraft hardware in the foreground and Martian terrain in the background. (Credit: CNSA)

China’s Zhurong rover was equipped with a ground-penetrating radar system, allowing it to peer beneath Mars’s surface. Researchers have announced new results from the scans of Zhurong’s landing site in Utopia Planitia, saying they identified irregular polygonal wedges located at a depth of about 35 meters all along the robot’s journey. The objects measure from centimeters to tens of meters across. The scientists believe the buried polygons resulted from freeze-thaw cycles on Mars billions of years ago, but they could also be volcanic, from cooling lava flows.

Continue reading “There are Mysterious Polygons Beneath the Surface of Mars”

Simulating a Piece of Space Junk

A graphic which depicts simulating a satellite's death spiral. ESA/University of Bern.

When a spacecraft dies, it loses the ability to maintain its direction in space. Additionally, as the spacecraft’s orbit begins to decay, the thin atmosphere interacts with the spacecraft, causing it to tumble unpredictably. ESA’s Clean Space Initiative hopes to remove the most hazardous space debris. This means capturing dead satellites that are in a death spiral. To help begin the project Researchers observed over 20 objects in space over two year and then recreated their spin to develop plans to retrieve them.

Retrieving a tumbling spacecraft will require a brave robot to take on the task!

Continue reading “Simulating a Piece of Space Junk”

Aerocapture is a Free Lunch in Space Exploration

Visualisation of the ExoMars Trace Gas Orbiter aerobraking at Mars. Credit: ESA/ATG medialab.

This article was updated on 11/28/23

When spacecraft return to Earth, they don’t need to shed all their velocity by firing retro-rockets. Instead, they use the atmosphere as a brake to slow down for a soft landing. Every planet in the Solar System except Mercury has enough of an atmosphere to allow aerocapture maneuvers, and could allow high-speed exploration missions. A new paper looks at the different worlds and how a spacecraft must fly to take advantage of this “free lunch” to slow down at the destination.

Continue reading “Aerocapture is a Free Lunch in Space Exploration”

A Chinese Booster (and Additional Secret Payload) Caused a Double Crater on the Moon

A rocket body impacted the Moon on March 4, 2022, near Hertzsprung crater, creating a double crater roughly 28 meters wide in the longest dimension. Credits: NASA/Goddard/Arizona State University

Last year, astronomers warned that a large piece of debris was on a collision course with the Moon. Initially, they speculated that it was a SpaceX booster but later zeroed in on a Chinese Long March 3C rocket booster that launched the Chang’e 5 mission. When it did impact on March 4, 2022, astronomers noted a strange double crater.

A new paper suggests that it couldn’t have been a single object breaking up since there’s no atmosphere on the Moon. Instead, the booster must have been carrying an additional, undisclosed payload.

Continue reading “A Chinese Booster (and Additional Secret Payload) Caused a Double Crater on the Moon”

Simulating How Moon Landings Will Kick Up Dust

A look at the Apollo 12 landing site. Astronaut Alan Bean is shown, working near the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module (LM) during the mission's first extravehicular activity, (EVA) on Nov. 19, 1969. Credit: NASA.

When spacecraft land on the Moon, their exhaust strikes the powdery regolith on the lunar surface. The Moon has low gravity and no atmosphere, so the dust is thrown up in a huge plume. The dust cloud could possibly interfere with the navigation and science instruments or cause visual obstructions. Additionally, the dust could even be propelled into orbit, risking other spacecraft nearby.

In working to better understand the impact future landers might have on the lunar surface, NASA has developed a new supercomputer simulation. They used it to predict how Apollo 12’s lunar lander exhaust would interact with regolith, then compared this to the actual results of the landing.

Continue reading “Simulating How Moon Landings Will Kick Up Dust”

Gaze Into the Heart of the Milky Way in This Latest JWST Image

James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. Credit: NASA, ESA, CSA, STScI, S. Crowe (UVA).

Thanks to its infrared capabilities, the James Webb Space Telescope (JWST) allows astronomers to peer through the gas and dust clogging the Milky Way’s center, revealing never-before-seen features. One of the biggest mysteries is the star forming region called Sagittarius C, located about 300 light-years from the Milky Way’s supermassive black hole. An estimated 500,000 stars are forming in this region that’s being blasted by radiation from the densely packed stars. How can they form in such an intense environment?

Right now, astronomers can’t explain it.

Continue reading “Gaze Into the Heart of the Milky Way in This Latest JWST Image”