Type 1a supernovae are extremely powerful events that occur in binary systems containing at least one white dwarf star – the core remnant of a Sun-like star. Sometimes, the white dwarf’s powerful gravity will siphon material from its companion star until it reaches critical mass and explodes. In another scenario, a binary system of two white dwarfs will merge, producing the critical mass needed for a supernova. Unlike regular supernovae, which occur every fifty years in the Milky Way, Type Ia supernovae happen roughly once every five hundred years.
In addition to being incredible events, Type 1a supernovae are useful astronometric tools. As part of the Cosmic Distance Ladder, these explosions allow astronomers to measure the distances to objects millions or billions of light-years away. This is vital to measuring the rate at which the Universe is expanding, otherwise known as the Hubble Constant. Thanks to an international team of researchers, a catalog of Type 1a Supernovae has just been released that could change what we know of the fundamental physics of supernovae and the expansion history of the Universe.
Continue reading “Huge Release of Type 1a Supernovae Data”