Categories: CuriosityMars

At One Time, This Region of Mars was Inundated by a “Megaflood”

Thanks to multiple robotic missions that have explored Mars’ atmosphere, surface, and geology, scientists have concluded that Mars was once a much warmer, wetter place. In addition to having a thicker atmosphere, the planet was actually warm enough that flowing water could exist on the surface in the form of rivers, lakes, and even an ocean that covered much of the northern hemisphere.

According to new research based on data collected by NASA’s Curiosity mission, it appears that the Gale Crater (where the rover has been exploring for the past eight years) experienced massive flooding roughly 4 billion years ago. These findings indicate that the mid-latitudes of Mars were also covered in water at one time and offers additional hints that the region once supported life.

These findings were the subject of a study that recently appeared in the Nov. 5th issue of Nature Scientific Reports. The research team responsible was led by Dr. Ezat Heydari (professor of physics at Jackson State University) and included multiple earth scientists, astronomers, and researchers from NASA’s Jet Propulsion Laboratory (JPL), Cornell University, and the University of Hawaii.

This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin” on lower Mount Sharp. Credits: NASA/JPL-Caltech/MSSS

On Mars, evidence of the planet’s watery past is written all across the landscape in the form of well-preserved geological features. Ironically, it is the nature of the Martian environment today – freezing cold, desiccated, no flowing water, and a very thin atmosphere – that has allowed for this evidence to be preserved over the course of billions of years.

As they indicate in their study, the team analyzed data obtained by Curiosity on the gravel ridges in the Hummocky Plains Unit and the ridge-and-trough band formations in the Striated Unit. These wave-shaped sedimentary deposits are what is known as “megaripples” (aka. antidunes). As co-author Alberto G. Fairén, a visiting astrobiologist in the College of Arts and Sciences, explained to the Cornell Chronicle:

“We identified megafloods for the first time using detailed sedimentological data observed by the rover Curiosity. Deposits left behind by megafloods had not been previously identified with orbiter data.”

These antidunes at the bottom of the Gale Crater measure about 9 meters (30 feet) high and are spaced about 137 (450 feet) apart. In addition, they are dated to about 4 billion years ago and are identical to layered sedimentary features on Earth that were deposited by melting ice during the early Quaternary Ice Age (ca. 2 million years ago).

MRO image of Gale Crater illustrating the landing location and trek of the Rover Curiosity. Credits: NASA/JPL/T.Reyes

Here too, the research team attributes the formation of these features to melting ice, which was likely caused by a large impact that released carbon dioxide and methane from the planet’s frozen reservoirs. The resulting release of water vapor and gases combined to produce a greenhouse effect that led to a temporary rise in temperatures and wetter conditions.

As this water vapor cooled, it condensed to form clouds that led to torrential rain that may have been planetwide. In the Gale Crater, this water pooled and combined with waters flooding down from Mount Sharp, located in the center of the crater. The result of all this was a series of flash floods that created the megaripples at the bottom of the crater, which remained there intact after the water disappeared.

This latest evidence is yet another indication that the Gale Crater once had persistent lakes and streams, as shown by sedimentary deposits. The presence of these long-lived bodies of water remains one of the strongest indications that microbial life could have existed in the Gale Crater and on Mount Sharp billions of years ago. As Fairén summarized:

“Early Mars was an extremely active planet from a geological point of view. The planet had the conditions needed to support the presence of liquid water on the surface – and on Earth, where there’s water, there’s life. So early Mars was a habitable planet. Was it inhabited? That’s a question that the next rover Perseverance … will help to answer.”

Artist’s impression of the Perseverance rover on Mars. Credit: NASA-JPL

On February 18th, 2021, the Curiosity rover will be joined by its sister-mission, Perseverance. Once it reaches the surface, this robotic explorer will join in the search for life on Mars (past and present) and will be the first mission to obtain samples for eventual return to Earth. The analysis of these will allow scientists to finally get an up-close glimpse of Martian soil and rock, which could contain the telltale signs of past life.

This mission, and others that are due to arrive in the coming years, will help pave the way for eventual crewed missions to Mars, which will set up shop on the Red Planet and attempt to unlock the enduring mysteries about its geological history and evolution.

Further Reading: Cornell Chronicle, Nature Scientific Reports

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Matched Twin Stars are Firing Their Jets Into Space Together

Since it began operating in 2022, the James Webb Space Telescope (JWST) has revealed some…

3 hours ago

Astroscale Closes Within 50 Meters of its Space Junk Target

Space debris is a major problem for space exploration. There are millions of pieces up…

3 hours ago

Here’s Hubble’s First Image in its New Pointing Mode

This is probably what the demise of the Hubble Space Telescope was always going to…

8 hours ago

Slingshotting Around the Sun Would Make a Spacecraft the Faster Ever

NASA is very interested in developing a propulsion method to allow spacecraft to go faster.…

9 hours ago

Perseverance Found Some Strange Rocks. What Will They Tell Us?

NASA's Perseverance Rover has left Mount Washburn behind and arrived at its next destination, Bright…

1 day ago

Marsquakes Can Help Us Find Water on the Red Planet

Earth is a seismically active planet, and scientists have figured out how to use seismic…

1 day ago