Categories: galaxies

Hundreds of New Gravitational Lenses Discovered to Help Study the Distant Universe

General relativity tells us that everything, even light, is affected by the mass of an object. When a beam of light passes near a large mass, its path is deflected. This shift in the direction of light is known as gravitational lensing, and it was one of the first confirmed effects of Einstein’s theory.

In cosmology, there are two types of gravitational lensing, and both play an important role in understanding the evolution of the universe. The first is weak lensing, where light from a distant galaxy passes through a cluster of galaxies, but not close to any particular galaxy. The bending of light is small, which means the shape of the galaxy is distorted slightly. By looking at these distortions, astronomers can measure the average density of matter in the universe. This helps us understand dark energy.

A simulation of how distant galaxies are affected by weak lensing (shape noise) and strong lensing. Credit: Wikipedia

The second type is strong lensing, and it is rarer. For strong lensing, a distant galaxy has to be nearly blocked by a closer one. In this case, the light of the distant galaxy is strongly distorted, often into arcs of light surrounding the closer galaxy. Since the amount of distortion depends on the mass of the closer galaxy, it lets us measure the amount of dark matter in the galaxy. It also allows us to measure the expansion rate of the universe.

But because strongly lensed galaxies are rare, it has been difficult to find enough lensed galaxies for a good survey. To put good constraints on the measure of dark matter and dark energy, we need many more strongly lensed galaxies to study. Fortunately, we’re starting to find them.

A lens candidate found by the study (left), and the same galaxy as seen by Hubble (right). Credit: Hubble Space Telescope, Dark Energy Camera Legacy Survey

Recently a team used an AI program to find lensed galaxies in sky survey data. After training the program on known lensed and unlensed galaxies, it then combed through observations to find more than 300 candidates lensed galaxies. Many of them were then confirmed by follow-up observations with the Hubble Space Telescope.

Now that the method has proved useful, the team plans to analyze other sky-survey data, with the goal of finding at least a thousand strongly lensed galaxies. If they are successful, the work will become a powerful tool for understanding the cosmos.

Reference: Huang, X., et al. “Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey.” The Astrophysical Journal 894.1 (2020): 78.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Strange Green Star is the Result of a Merger Between two White Dwarfs

Chandrasekhar found there is an upper limit for the mass of a white dwarf, but…

16 hours ago

Mars has Been Through Many Ice Ages in the Last Billion Years

Like Earth, Mars has experienced periods of extreme glaciation or ice sheet coverage, which are…

19 hours ago

A Habitat at Ceres Could be the Gateway to the Outer Solar System

A new proposal from the inventor of the E-sail shows how we could create an…

1 day ago

New Drones for Exploring Mars are Getting Tested in Iceland

It's looking more and more like the future of space exploration could involve drones in…

2 days ago

Astronomers Confirm That Darksat is About Half as Bright as an Unpainted Starlink

Space-based internet service is poised to revolutionize the internet and bring high-speed connectivity to countless…

3 days ago

This is a Simulation of the Interstellar Medium Flowing Like Smoke Throughout the Milky Way

How do stars form? We know they form from massive structures called molecular clouds, which…

3 days ago