Astronomy

James Webb is Enduring its Final Stage of Testing Before it Ships off for Kourou, French Guiana

Once deployed, the James Webb Space Telescope (JWST) will be the most powerful telescope ever built. As the spiritual and scientific successor to the Hubble, Spitzer, and Kepler space telescopes, this space observatory will use its advanced suite of infrared instruments to the look back at the earliest stars and galaxies, study the Solar System in depth, and help characterize extra-solar planets (among other things).

Unfortunately, the launch of the JWST has been subject to multiple delays, with the launch date now set for some time in 2019. Luckily, on Thursday, March 8th, engineers at the Northrop Grumman company headquarters began the final step in the observatory’s integration and testing. Once complete, the JWST will be ready to ship to French Guiana, where it will be launched into space.

This final phase consisted of removing the combined optics and science instruments from their shipping containers – known as the Space Telescope Transporter for Air, Road and Sea (STTARS) – which recently arrived after being testing at NASA’s Johnson Space Center in Houston. This constitutes half the observatory, and includes the telescope’s 6.5 meter (21.3 foot) golden primary mirror.

The Space Telescope Transporter for Air, Road and Sea (STTARS) being opened at Northrop Grumman on March 8th, 2018, to reveal the combined optics and science instruments of NASA’s James Webb Space Telescope. Credits: NASA/Chris Gunn

The science payload was also tested at NASA’s Goddard Space Flight Center last year to ensure it could handle the vibrations associated with space launches and the temperatures and vacuum conditions of space. The other half of the observatory consists of the integrated spacecraft and sunshield, which is in the final phase of assembly at the Northrop Grumman company headquarters.

These will soon undergo a launch environment test to prove that they are ready to be combined with the science payload. Once both halves are finished being integrated, addition testing will be performed to guarantee the  fully assembled observatory can operate at the L2 Earth-Sun Lagrange Point. As Eric Smith, the program director for the JWST at NASA Headquarters, said in a recent NASA press statement:

“Extensive and rigorous testing prior to launch has proven effective in ensuring that NASA’s missions achieve their goals in space. Webb is far along into its testing phase and has seen great success with the telescope and science instruments, which will deliver the spectacular results we anticipate.”

These final tests are crucial to ensuring that that the observatory deploys properly and can operate once it is in space. This is largely because of the telescope’s complicated design, which needs to be folded in order to fit inside the Ariane 5 rocket that it will carry it into space. Once it reaches its destination, the telescope will have to unfold again, deploying its sunshield, mirrors and primary mirror.

The James Webb Space Telescope’s sunshield being deployed inside a cleanroom at Northrop Grumman’s company headquarter’s, in October 2017. Credits: Northrop Grumman

Not only does all of this represented a very technically-challenging feet, it is the first time that any space telescope has had to perform it. Beyond that, there are also the technical challenges of building a complex observatory that is designed to operate in space. While the JWST’s optics and science instruments were all built at room temperature here on Earth, they had to be designed to operate at cryogenic temperatures.

As such, its mirrors had to be precisely polished and formed that they would achieve the correct shape once they cool in space. Similarly, its sunshield will be operating in a zero gravity environment, but was built and tested here on Earth where the gravity is a hefty 9.8 m/s² (1 g). In short, the James Webb Space Telescope is the largest and most complex space telescope ever built, and is one of NASA’s highest priority science projects.

It is little wonder then why NASA has had to put the JWST through such a highly-rigorous testing process. As Smith put it:

“At NASA, we do the seemingly impossible every day, and it’s our job to do the hardest things humankind can think of for space exploration. The way we achieve success is to test, test and retest, so we understand the complex systems and verify they will work.”

The James Webb Space Telescope (which is scheduled to launch in 2019) will be the most powerful telescope ever deployed. Credit: NASA/JPL

Knowing that the JWST is now embarking on the final phase of its development – and that its engineers are confident it will perform up to task – is certainly good news. Especially in light of a recent report from the US Government Accountability Office (GAO), which stated that more delays were likely and that the project would probably exceed its original budget cap of $8 billion.

As the report indicated, it is the final phase of integration and testing where problems are most likely to be found and schedules revised. However, the report also stated that “Considering the investment NASA has made, and the good performance to date, we want to proceed very systematically through these tests to be ready for a Spring 2019 launch.”

In other words, there is no indication whatsoever that Congress is considering cancelling the project, regardless of further delays or cost overruns. And when the JWST is deployed, it will use its 6.5 meter (21-foot) infrared-optimized telescopes will search to a distance of over 13 billion light years, allow astronomers to study the atmospheres of Solar Planets, exoplanets, and other objects within our Solar System.

So while the JWST may not make its launch window in 2019, we can still expect that it will be taking to space in the near future. And when it does, we can also expect that what it reveals about our Universe will be mind-blowing!

Further Reading: NASA

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Webb Completes Its Second Year of Operations

What happens when a spiral and an elliptical galaxy collide? To celebrate the second anniversary…

7 hours ago

Galaxies Regulate their Own Growth so they Don’t Run Out of Star Forming Gas

Look at most spiral or barred spiral galaxies and you will see multiple regions where…

1 day ago

Mapping the Stars in a Dwarf Galaxy to Reveal its Dark Matter

Dark matter is curious stuff! As the name suggests, it’s dark making it notoriously difficult…

2 days ago

A Close Pulsar Measures 11.4 km Across

When massive stars detonate as supernovae, they leave often behind a pulsar. These fast rotating…

2 days ago

Solar Flares and Solar Magnetic Reconnection Get New Spotlight in Two Blazing Studies

Two recent studies published in The Astrophysical Journal discuss findings regarding solar flare properties and…

2 days ago

‘Fly Me to the Moon’ Points to the Past and Future of Moonshot Marketing

In a new movie titled “Fly Me to the Moon,” a marketing consultant played by Scarlett Johansson…

2 days ago