Remember the neat tidy solar system of the 20th century? As a child of the 1970s, we remember orderly planets, with circular orbits punctuated by the occasional asteroid or comet. They say ignorance is bliss, and the modern astronomical age of discovery in the 21st century has since revealed a cosmic terra incognita in our solar backyard.

We’re talking about the 99% of the solar system by volume out beyond the orbit Neptune, occupied by Trans-Neptunian Objects (TNO), Plutinos (the object, not the drink), Kuiper Belt Objects (KBOs) and more.

136108 Haumea — one of the strangest worlds of them all — was introduced into the solar system menagerie about ten years ago. Discovered by Mike Brown (@Plutokiller extraordinaire) and team in late December 2004 from the Palomar Observatory, Haumea (say HOW-meh) received its formal name on September 17, 2008 along with its dwarf planet designation. Remember, astronomers discovered Haumea — like Xena turned Eris — before the series of decisions by the International Astronomical Union in 2006 which led to the Pluto is a planet/is a dwarf planet/ is a Plutoid roller coaster ride.

The orbit of 136108 Haumea. Image credit: NASA/JPL

You’ve come a long way, little ice world, as New Horizons has finally given us a view of Pluto and friends just this past summer. Thankfully, most of us weren’t on Twitter yet back in 2006…  heck, you can even read the original article by Universe Today  from around the time of Eris and Haumea’s discovery (really: we’ve been around that long!)

It wasn’t long before Brown and team realized they had a strange discovery on their hands, as well as a lingering controversy. First, a team from the Sierra Nevada Observatory in Spain attempted to scoop the Palomar team concerning the discovery. It was later learned that the Sierra Nevada team was accessing the Caltech logs remotely, and looking at where the telescopes were hunting in the sky, and at what times. Though the Spanish team later conceded accessing the observation logs, they maintained that they were double-checking earlier observations of the subject object from 2003. Wherever you stand on the discovery hullabaloo, Mike Brown goes into depth on the modern astronomical controversy in his book How I Killed Pluto and Why it Had it Coming.

Haumea (the ‘egg’ to the lower left) versus ESA Herschel’s population of Trans-Neptunian Objects Image credit: ESA/Herschel/PACS/SPIRE

Haumea initially earned the nickname ‘Santa Claus’ due to its discovery near the Christmas holiday. Haumea derives its formal name from the Hawaiian goddess of childbirth. Likewise, the reindeer inspired moons Rudolph and Blitzen were later named Hi’aka and Namaka after daughters of Haumea in the Hawaiian pantheon.   Brown at team discovered both moons shortly after Haumea itself.

A Bizarre World

Saturn’s moon Methone… a possible ‘mini-twin’ of Haumea? Image credit: NASA/JPL-Caltech/Space Science Institute

The Bizzaro homeworld of Superman mythos has nothing on Haumea. OK, maybe it’s not a perfect cube — remember, nothing’s perfect on the Bizzaro planet either — but it does have a decidedly oblate egg shape.   Haumea is a fast rotator, with a ‘day’ equal to about four hours. We know this due to periodic changes in brightness. Haumea also has a high albedo of about 80%, similar to freshly fallen snow.

Models suggest that Haumea is about twice as long as it is wide, with dimensions of 2,000 kilometres along its long axis, versus 1,000 kilometres through its poles. The presence of two tiny moons allows us to estimate its mass at about 33% of Pluto, and 6% that of Earth’s Moon. With such a fast rotation, Haumea must just be barely maintaining hydrostatic equilibrium, though it’s stretching the world to its max.

Haumea and friends: orbital inclinations of TNO/KBO families vs AU distance. Image credit: Wikimedia/Eurocommuter

Evidence of an ancient collision, perhaps? It would be fascinating to see Haumea up close. Like Pluto, however, it’s distant, with an aphelion near 51.5 AU and a perihelion near 35 AU. Orbiting the Sun once every 284 years, Haumea just passed aphelion in 1992 about a decade prior to discovery, and perhaps the time to send a New Horizons-type mission past it would be near perihelion in 2134.  Interestingly, Haumea is also in a near 7:12 resonance with Neptune, meaning it completes 7 orbits around the Sun to Neptune’s 12.

The outer solar system view from Haumea. Image credit: Starry Night Education Software

A Swift Sky

Astronomy from Haumea is literally dizzying to contemplate.  First, prepare yourself for that four hour day: you would easily see the rotation of the sky — to the tune of an object rising and reaching the zenith in just an hour — moving in real time. Then there’s the two moons Namaka and Hi’iaka, in 18 and 50 day orbits, respectively… both would show discernible discs and phases courtesy of the Sun, which would currently present a  38” disk shining at magnitude -18 (still about 100 times brighter than a Full Moon). Looking for Earth? It’s an easy catch at magnitude +4.8 but never strays more than 1 degree from the Sun, twice the diameter of a Full Moon.

An inner solar system view from Haumea. the green circle is twice the size of a Full Moon. Image credit: Starry Night Education Software

Haumea currently shines at magnitude +17 in the constellation Boötes. Theoretically, it’s within the grab of a large amateur telescope, though to our knowledge, no backyard observer has ever manage to nab it… perhaps this will change over the next century or so towards perihelion?

Scratch that… we’ve since learned that Mike Weasner did indeed nab Haumea in 2013 from his backyard Cassiopeia observatory near Oracle, Arizona:

A capture of Haumea… with an 8″ telescope! The brilliant star in the frame is magnitude +2.7 Eta Boötis (Murphid). Image credit: Mike Weasner/Cassiopeia observatory

Awesome!

The discovery of Haumea and friends is a fascinating tale of modern astronomy, and shows us just how strange the brave new worlds of the outer solar system are. Perhaps one day, human eyes will gaze at the bizarre skies of Haumea… though keeping a telescope tracking might be a true challenge!

 

 

 

David Dickinson

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe as he travels the world with his wife.

Recent Posts

SpaceX To Fix Hubble, DART Success, Exciting Enceladus Discoveries

Humanity moved an asteroid on purpose for the first time in history. Juno flies past…

7 hours ago

Astronomers Simulate the Cat’s Eye Nebula in 3D

In a recent study published in Monthly Notices of the Royal Astronomical Society, an international…

12 hours ago

Will Titan finally answer, ‘Are we alone?’

We recently examined how and why Jupiter’s moon, Europa, could answer the longstanding question: Are…

13 hours ago

China’s Zhurong Rover Looks Deep Underground and Sees Layers From Multiple Floods on Mars

Mars exploration has been ongoing for decades at this point, and some regions of the…

15 hours ago

Companies Will Have Five Years to Dispose of Their Dead Satellites

Kessler syndrome seems to be a growing fear for those interested in space exploration. The…

16 hours ago

Mars Rocks Have the Right raw Ingredients to 3D Print Everything From Tools to Rocket Parts

3D printing will be an absolutely critical technology as space exploration starts to take off.…

16 hours ago