Rosetta’s Comet Already Spewing Dust, One Year Before Getting Close To The Sun

Mark your calendars, astronomy geeks: exactly one year from today, the comet the Rosetta spacecraft is chasing will make its closest approach to the Sun. As Comet 67P/Churyumov–Gerasimenko draws closer to the star, the radiation pressure will cause gas, ice and dust to stream off the comet in ever greater quantities, scientists expect.

But that process is already starting. Preliminary measurements by a dust detector aboard the Rosetta spacecraft show that dust is at least as frequent — or perhaps even more abundant — than what models have predicted. Meanwhile, as reported on Universe Today earlier this week, Rosetta’s COSIMA instrument is also doing dust measurements.

Rosetta’s Grain Impact Analyser and Dust Accumulator (GIADA) has already detected four dust grains on its impact sensor. The detections took place between Aug. 1 and Aug. 5 at various distances as Rosetta approached the comet, starting from as far as 814 kilometers (506 miles) to as close as 179 kilometers (111 miles). Rosetta arrived at the comet on Aug. 6.

The first impact was just a tad higher than the detection limit for GIADA, scientists said. They also estimated how big the grains are based on how quickly they crash into the impact detector — anywhere from tens of microns (the width of a human hair) to a few hundreds of microns across.

While the results are scientifically interesting, the European Space Agency pointed out that they will also have practical use.

An artist’s impression of the Grain Impact Analyser and Dust Accumulator (GIADA) on the Rosetta spacecraft, which is collecting dust from Comet 67P/Churyumov–Gerasimenko. The inset is a an analog dust grain used in the laboratory to calibrate the instrument. Credit: ESA/Rosetta/GIADA/Univ Parthenope NA/INAF-OAC/IAA/INAF-IAPS

A lander called Philae is expected to touch down on the comet in November, so dust predictions will help planning for that. And for Rosetta itself, knowing the dust environment can help protect the spacecraft from strikes.

“GIADA will also provide inputs to other instruments on-board Rosetta, and will help improve coma dust models in support of the Philae landing operations,” ESA stated.

“Furthermore, GIADA will play an important role for the health and the safety of Rosetta and its instruments, providing information about the deposition rates of dust on optical components and critical parts of the spacecraft, such as the solar panels.”

ESA added that the grains themselves are likely a mixture of silicates, organics and some other stuff. Ice from the nucleus surrounds the grains, and the ice itself becomes a gas when the Sun warms the comet. Dust surrounds the comet in a coma and as it gets closer to the Sun, it streams out as a tail.

Source: European Space Agency

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

The JWST is Forcing Astronomers to Rethink Early Galaxies

The JWST has surprised astronomers again. Contrary to our existing understanding, the JWST showed us…

8 hours ago

The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability

Most planets and moons in the Solar System are clearly dead and totally unsuitable for…

13 hours ago

If You Could See Gravitational Waves, the Universe Would Look Like This

Our biology limits our vision. Our eyes can only perceive specific wavelengths of light. But…

16 hours ago

Solar Sails Could Reach Mars in Just 26 Days

A recent study submitted to Acta Astronautica explores the potential for using aerographite solar sails…

1 day ago

NASA’s Perseverance Rover is Setting Records on Mars

NASA's Perseverance Rover has been exploring Mars for more than 900 sols. It's the most…

1 day ago

This 3D Simulation of a Supernova Needed 5 Million Hours of Supercomputing

When the largest stars in the Universe run out of fuel, they detonate as supernovae,…

1 day ago