The Hubble Space Telescope, to which we owe our current estimates for the age of the universe and the first detection of organic matter on an exoplanet, is very much doing science and still alive. It’s latest masterpiece remixes an old hit – apparently a growing trend in space science as well as space music.
Continue reading “A new Hubble Image Reveals a Shredded Star in a Nearby Galaxy”Star Formation Simulated in the lab, Using Lasers, of Course
The vacuum of space isn’t really a vacuum. A vacuum is defined by Merriam-Webster as “a space absolutely devoid of matter.” However, even empty space has some matter in it. This matter, in the form of dust and gas, tends to collect into what are called molecular clouds. Without anything interfering with them they continue to float as a cloud.
When something happens to interrupt the balance of the molecular cloud, some of that dust and gas starts clumping together. As more and more of this dust and gas clump together gravity takes over and starts forming stars. One way that the balance of a molecular cloud can be interfered with is by a supernova remnant, the remains of an exploded star. Plasma jets, radiation, and other clouds can also interact with these clouds.
Continue reading “Star Formation Simulated in the lab, Using Lasers, of Course”Supernova Remnant Cassiopeia A is Lopsided
Cassiopeia A is the remnant of a supernova that exploded 11,000 light-years away. The light from the exploding star likely reached Earth around 1670 (only a couple of years before Newton invented the reflecting telescope.) But there are no records of it because the optical light didn’t reach Earth.
The Cass A nebula ripples with energy and light from the ancient explosion and is one of the most-studied objects in deep space. It’s an expanding gas shell blasted into space when its progenitor star exploded.
But Cass A isn’t expanding evenly, and astronomers think they know why.
Continue reading “Supernova Remnant Cassiopeia A is Lopsided”The Debris Cloud From a Supernova Shows an Imprint of the Actual Explosion
Computer models are continuing to play an increasing role in scientific discovery. Everything from the first moments after the Big Bang to potential for life to form on other planets has been the target of some sort of computer model. Now scientists from the RIKEN Astrophysical Big Bang Laboratory are turning this almost ubiquitous tool to a very violent event – Type Ia supernovae. Their work has now resulted in a more nuanced understanding of the effects of these important events.
Continue reading “The Debris Cloud From a Supernova Shows an Imprint of the Actual Explosion”An All-Sky X-Ray Survey Finds the Biggest Supernova Remnant Ever Seen
Our sky is missing supernovas. Stars live for millions or billions of years. But given the sheer number of stars in the Milky Way, we should still expect these cataclysmic stellar deaths every 30-50 years. Few of those explosions will be within naked-eye-range of Earth. Nova is from the Latin meaning “new”. Over the last 2000 years, humans have seen about seven “new” stars appear in the sky – some bright enough to be seen during the day – until they faded after the initial explosion. While we haven’t seen a new star appear in the sky for over 400 years, we can see the aftermath with telescopes – supernova remnants (SNRs) – the hot expanding gases of stellar explosions. SNRs are visible up to a 150,000 years before fading into the Galaxy. So, doing the math, there should be about 1200 visible SNRs in our sky but we’ve only managed to find about 300. That was until “Hoinga” was recently discovered. Named after the hometown of first author Scientist Werner Becker, whose research team found the SNR using the eROSITA All-Sky X-ray survey, Hoinga is one of the largest SNRs ever seen.
Continue reading “An All-Sky X-Ray Survey Finds the Biggest Supernova Remnant Ever Seen”A New Supernova Remnant Found from an Exploding White Dwarf Star
Astronomers have spotted the remnant of a rare type of supernova explosion. It’s called a Type Iax supernova, and it’s the result of an exploding white dwarf. These are relatively rare supernovae, and astronomers think they’re responsible for creating many heavy elements.
They’ve found them in other galaxies before, but this is the first time they’ve spotted one in the Milky Way.
Continue reading “A New Supernova Remnant Found from an Exploding White Dwarf Star”Hubble’s Photo of the Cygnus Loop is, Of Course, Incredible
If you’re a Star Trek fan, you may think the above image portrays the “Nexus” from the movie Star Trek: Generations. In the film, the Nexus was a ribbon-like extra-dimensional realm that exists outside of normal space-time.
But this is actually a real image from the venerable Hubble Space Telescope, of the Cygnus Loop. This stunning picture from space shows just a small portion of a blast wave left over from a supernova that took place, from our vantage point, in the northern constellation Cygnus the Swan.
Continue reading “Hubble’s Photo of the Cygnus Loop is, Of Course, Incredible”Astronomers Think They’ve Found the Neutron Star Remnant From Supernova 1987a
In 1987, astronomers witnessed a spectacular event when they spotted a titanic supernova 168,000 light-years away in the Hydra constellation. Designated 1987A (since it was the first supernova detected that year), the explosion was one of the brightest supernova seen from Earth in more than 400 years. The last time was Kepler’s Supernova, which was visible to Earth-bound observers back in 1604 (hence the designation SN 1604).
Since then, astronomers have tried in vain to find the company object they believed to be at the heart of the nebula that resulted from the explosion. Thanks to recent observations and a follow-up study by two international teams of astronomers, new evidence has been provided that support the theory that there is a neutron star at the heart of SN 1604 – which would make it the youngest neutron star known to date.
Continue reading “Astronomers Think They’ve Found the Neutron Star Remnant From Supernova 1987a”One of the Largest Astronomical Images Ever Made
The northern portion of the Cygnus Loop, as seen in an enormous new panorama from the National Optical Astronomy Observatory (NOAO) and WIYN partners
Looking for a stunning new desktop image to wrap up the year? Try this: it’s an amazing panorama of the Cygnus Loop, a supernova remnant located 1,500 light-years away in the constellation (you guessed it) Cygnus. The full-size image, acquired with the wide-field Mosaic camera on the WIYN 0.9-meter telescope at Kitt Peak, Arizona, is a staggering 600 million pixels in size — over 1.68 gigabytes — making it one of the largest astronomical images ever made!
See the full image (and links to download larger versions) below:
2000-pixel-wide version of the full Cygnus Loop panorama
The entire structure of the Cygnus Loop, the gaseous remains of a supernova that occurred 5,000 – 10,000 years ago, covers an area nearly 45 times the size of the full Moon in the sky.
In the image, hydrogen alpha, sulphur, and oxygen ions correspond to the red, green, and blue color values, respectively.
“Images like this are amazing because they can remind you of the big picture and beauty that surrounds us.”
– Dr. Richard Cool, MMT Observatory
From the NOAO press release:
Astronomers estimate the supernova explosion that produced the nebula occurred between 5,000 to 10,000 years ago. First noted in 1784 by William Herschel, it is so large that its many parts have been catalogued as separate objects, including NGC 6992, NGC 6995 and IC 1340 along the eastern (left) side of the image, NGC 6974 and NGC 6979 near the top-center, and the Veil Nebula (NGC 6960) and Pickering’s Triangle along the western (right) edge. The bright star near the western edge of the image, known as 52 Cygnus, is not associated with the supernova.
“Often, astronomical research reduces images to dry tables of numerical information that we analyze in order to more deeply understand our universe,” said Dr. Richard Cool, astronomer at the MMT Observatory in Arizona, who originally obtained the images in 2003 while still a graduate student. “Images like this are amazing because they can remind you of the big picture and beauty that surrounds us.”
This incredible image demonstrates that even relatively small telescopes are capable of producing cutting-edge research, when equipped with modern cameras.
Got bandwidth to spare? Download the full-size 1686.5 MB TIFF image here, or find other versions on the NOAO page here.
Image Credit: T.A. Rector (University of Alaska Anchorage), Richard Cool (University of Arizona) and WIYN/NOAO/AURA/NSF. Inset image: original dome of the Kitt Peak 0.9-meter telescope. (NOAO/AURA/NSF)