The Center of the Milky Way is the Most Likely Place to Find a Galactic Civilization

Aim for the Center

The Milky Way is 13 BILLION years old. Some of our Galaxy’s oldest stars were born near the beginning of the Universe itself. During all these eons of time, we know at least one technological civilization has been born – US!

But if the Galaxy is so ancient, and we know it can create life, why haven’t we heard from anybody else? If another civilization was just 0.1% of the Galaxy’s age older than we are, they would be millions of years further along than us and presumably more advanced. If we are already on the cusp of sending life to other worlds, shouldn’t the Milky Way be teeming with alien ships and colonies by now?

Maybe. But it’s also possible that we’ve been looking in the wrong place. Recent computer simulations by Jason T. Wright et al suggest that the best place to look for ancient space-faring civilizations might be the core of the Galaxy, a relatively unexplored target in the search for extra terrestrial intelligence.

Animation showing the settlement of the galaxy. White points are unsettled stars, magenta spheres are settled stars, and white cubes represent a settlement ship in transit. The spiral structure formed is due to galactic shear as the settlement wave expands. Once the Galaxy’s center is reached, the rate of colonization increases dramatically. Credit: Wright et al
Continue reading “The Center of the Milky Way is the Most Likely Place to Find a Galactic Civilization”

What Would It Take To See Artificial Lights at Proxima Centauri B?

Is there an alien civilization next door? It’s…possible(ish). In late 2020, we discovered a signal from the direction of Proxima Centauri (not necessarily from Proxima Centauri), our closest neighbour star. Named BLC- 1 by project Break Through Listen, the signal is still being analyzed to ensure it isn’t simply an echo of our own civilization – typically what they turn out to be. But why not just directly look at planets in Proxima Centauri and see if a civilization is there?

From space, the most obvious sign somebody lives on Earth is the glow from the nightside of our planet. Our cities emit light that’s shed into the Cosmos. Problem is that our current generation of telescopes are not powerful enough to see lights on distant worlds. But several researchers are testing the capabilities of the next generation of telescopes already on the drawing board. The finding? Yes! if advanced enough…or glowy enough…we would be able to see if another civilization has the lights on at Proxima Centauri.

8k compilation of footage taken from the International Space Station orbiting above Earth’s City Lights
Continue reading “What Would It Take To See Artificial Lights at Proxima Centauri B?”

“Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space

Simulated Hyperspace Travel

May the 4th be With You!

Blasting out of Mos Eisley Space Port, the Millennium Falcon carries our adventurers off Tatooine bringing Luke Skywalker across the threshold into space. With Imperial Star Destroyers closing, Luke bemoans Han Solo’s delay in jumping to Hyperspace. It takes time to make these calculations through the Falcon’s “Navicomputer.” Han explains that otherwise they could “fly right through a star” or “bounce too close to a supernova.” (probably the same effect of each – also are supernovas bouncy?)

Celestial calculations are needed to figure out where you’re going. In Star Wars these are done by ship computers, or later by trusty astromech droids like R2-D2. But, for the first time, simulations have been conducted of an uncrewed ship’s ability to autonavigate through interstellar space. While not at Hyperspace speeds, the simulations do account for velocities at up to half the speed of light. Created by Coryn A.L. Bailer-Jones of the Max Plank Institute for Astronomy, these simulations may be our first step to creating our own “Navicomputers” (or R2-D2s if they have a personality).

The most distant object we’ve ever sent into space, Voyager1, was launched in 1977 (same year as the release of Star Wars). It took 4 decades to leave the solar system. The next generation of interstellar craft may be far faster but also need their own way to navigate
c. NASA
Continue reading ““Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space”

More Audio from Perseverance: the Crunch of its Wheels on the Martian Regolith

In absence of (yet) being able to step foot on Mars, we have robotic vicarious experiences through our rovers including Perseverance which landed this past February 18th. In addition to photos we’ve collected from the surface over the decades, our ever-improving data connection to Mars made it possible to see video from Perseverance’s landing. That dramatic unfurl of the parachute and dust spray of the landing thrusters – astonishing! I’m not ashamed to admit I cried. Through Perseverance we’re also experiencing Mars exploration with another sense – SOUND! Sound from another planet!! Using Perseverance’s Entry, Descent, and Landing Microphone (EDL Mic) we recently recorded audio of Perseverance’s wheels rolling across the Martian regolith (broken rocks and dust or “soil”). The audio segment below is an edited portion of sound highlights from a longer 16 minute raw audio file.

NASA engineers combined three segments from the raw audio file recorded while the Perseverance Mars rover rolled across a section of Jezero Crater on sol 16 of the mission. Sections 0:20-0:45, 6:40-7:10, and 14:30-15:00 were combined into this 90-second highlight clip. There has been processing and editing to filter out some of the noise.
C. NASA/JPL-Caltech
Continue reading “More Audio from Perseverance: the Crunch of its Wheels on the Martian Regolith”

An All-Sky X-Ray Survey Finds the Biggest Supernova Remnant Ever Seen

Our sky is missing supernovas. Stars live for millions or billions of years. But given the sheer number of stars in the Milky Way, we should still expect these cataclysmic stellar deaths every 30-50 years. Few of those explosions will be within naked-eye-range of Earth. Nova is from the Latin meaning “new”. Over the last 2000 years, humans have seen about seven “new” stars appear in the sky – some bright enough to be seen during the day – until they faded after the initial explosion. While we haven’t seen a new star appear in the sky for over 400 years, we can see the aftermath with telescopes – supernova remnants (SNRs) – the hot expanding gases of stellar explosions. SNRs are visible up to a 150,000 years before fading into the Galaxy. So, doing the math, there should be about 1200 visible SNRs in our sky but we’ve only managed to find about 300. That was until “Hoinga” was recently discovered. Named after the hometown of first author Scientist Werner Becker, whose research team found the SNR using the eROSITA All-Sky X-ray survey, Hoinga is one of the largest SNRs ever seen.

Composite of the X-ray (pink) and radio (blue) image of Hoinga. The X-rays discovered by eROSITA are emitted by the hot debris of the exploded progenitor star. Radio antennae on Earth detect radiation emission from electrons in the outer shell of the supernova
Credit: eROSITA/MPE (X-ray), CHIPASS/SPASS/N. Hurley-Walker, ICRAR-Curtin (Radio)
Continue reading “An All-Sky X-Ray Survey Finds the Biggest Supernova Remnant Ever Seen”

A New Study Says That Betelgeuse Won’t Be Exploding Any Time Soon

I have stood under Orion The Hunter on clear evenings willing its star Betelgeuse to explode. “C’mon, blow up!” In late 2019, Betelgeuse experienced an unprecedented dimming event dropping 1.6 magnitude to 1/3 its max brightness. Astronomers wondered – was this dimming precursor to supernova? How cosmically wonderful it would be to witness the moment Betelgeuse explodes. The star ripping apart in a blaze of light scattering the seeds of planets, moons, and possibly life throughout the Universe. Creative cataclysm.

Only about ten supernova have been seen with the naked eye in all recorded history. Now we can revisit ancient astronomical records with telescopes to discover supernova remnants like the brilliant SN 1006 (witnessed in 1006AD) whose explosion created one of the brightest objects ever seen in the sky. Unfortunately, latest research suggests we all might be waiting another 100,000 years for Betelgeuse to pop. However, studying this recent dimming event gleaned new information about Betelgeuse which may help us better understand stars in a pre-supernova state.

This comparison image shows Betelgeuse, before and after its unprecedented dimming
ESO / M. Montargès et al.
Continue reading “A New Study Says That Betelgeuse Won’t Be Exploding Any Time Soon”

Plasma Thruster Could Dramatically Cut Down Flight Times to the Outer Solar System

I just finished the most recent season of The Expanse – my current favourite Sci-Fi series. Unlike most of my other go-to Sci-Fi, The Expanse’s narrative is (thus far) mainly contained to our own Solar System. In Star Trek, ships fly about the galaxy at Faster-Than-Light speeds giving mention to the many light years (or parsecs *cough* Star Wars) travelled to say nothing of sublight journeys within solar systems themselves. The distances between stars is huge. But, for current-day Earthling technology, our Solar System itself is still overwhelmingly enormous. It takes years to get anywhere.

In The Expanse, ships use a fictional sublight propulsion called The Epstein Drive to travel quickly through the Solar System at significant fractions of light speed. We’re not nearly there yet, but we are getting closer with the announcement of a new theoretical sublight propulsion. It won’t be an Epstein drive, but it may come to be known as the Ebrahimi Drive – an engine inspired by fusion reactors and the incredible power of solar Coronal Mass Ejections.

Fatima Ebrahimi in her Office c, Elle Starkman
Continue reading “Plasma Thruster Could Dramatically Cut Down Flight Times to the Outer Solar System”

The Universe in Formation. Hubble Sees 6 Examples of Merging Galaxies

Audio narration by the author is available above

10 billion years ago, galaxies of the Universe were ablaze with the light of newly forming stars. This epic phase of history is known as  “Cosmic Noon” – the height of all star creation. Galaxies like our Milky Way aren’t creating stars at nearly the rates they were in the ancient past. However, there is a time when galaxies in the present can explode with star formation – when they collide with each other. This recently published collage of merging galaxies by the Hubble HiPEEC survey (Hubble imaging Probe of Extreme Environments and Clusters) highlights six of these collisions which help us understand star formation in the early Universe.

Newly released collage of six galaxy mergers used in the HiPEEC survey.
Top Row Left to Right: NGC 3256, 1614, 4195 Bottom Row Left To Right: NGC 3690, 6052, 34
– Credit ESA/Hubble/NASA
Continue reading “The Universe in Formation. Hubble Sees 6 Examples of Merging Galaxies”

Some of Hayabusa2’s Samples are as Big as a Centimeter

A fireball hurtled across the sky on December 5th – the sample return capsule from the Hayabusa2 asteroid mission by JAXA (Japan Aerospace Exploration Agency). The capsule landed in Woomera, a remote location in the Australian Outback. Earlier this month, the capsule’s sample containers revealed fine grain topsoil from asteroid 162173 Ryugu. A second sample container has since been opened that contains chunks up to an entire centimeter in size.

Soil Samples returned by the Hyabusa2 Spacecraft -c JAXA
Continue reading “Some of Hayabusa2’s Samples are as Big as a Centimeter”

A Very Interesting Radio Signal was Just Detected Coming from Proxima Centauri

There’s a powerful scene in the movie “Contact” (one of my favs) where lead character Ellie Arroway is sitting among an array of telescopes and hears the first alien signal – an ominous pulse – received by humanity. She races back to the control center where the array is pointed off target and then back to verify the signal. Contact is made. Shortly after, a message is found in the signal and we’ve confirmed the existence of alien life!

Ellie Arroway was inspired by a real-life pillar of the SETI community, Dr. Jill Tarter. I had the privilege of interviewing Jill Tarter last year and asked about that scene. She laughed saying “There’s not a lot of sitting around with headphones on. It’s not really that simple.” When it comes to analyzing signals from the stars for alien life, distinguishing a potential alien message from the noise of our own planet is quite complicated.

Excitingly, we’re watching that analysis play out right now as a signal which appears to originate from our closest neighbour star, Proxima Centauri, was recently detected by the Breakthrough Listen Project

Simulation of Proxima b, a known planet in the habitable zone of the red dwarf star Proxima Centauri – SpaceEngine Pro by author
Continue reading “A Very Interesting Radio Signal was Just Detected Coming from Proxima Centauri”