Webb’s Infrared Eye Reveals the Heart of the Milky Way

The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense centre. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. Image Credit: NASA, ESA, CSA, STScI, S. Crowe (UVA)

The JWST is taking a break from studying the distant Universe and has trained its infrared eye on the heart of the Milky Way. The world’s most powerful space telescope has uncovered some surprises and generated some stunning images of the Milky Way’s galactic center (GC.) It’s focused on an enormous star-forming region called Sagittarius C (Sgr C).

Continue reading “Webb’s Infrared Eye Reveals the Heart of the Milky Way”

An Amateur Astronomer Discovered One-of-a-Kind Supernova Remnant

PA 30 imaged in O III on Sept 6, 2013 by KPNO from Ritter et al (2021) (left) and in S II from Fesen et al (2023) (right).

In 2013, amateur astronomer Dana Patchick was looking through images from the Wide-field Infrared Survey Explorer archive and discovered a diffuse, circular object near the constellation of Cassiopeia. He found this apparent nebula was interesting because it was bright in the infrared portion of the spectrum, but virtually invisible in the colors of light visible to our eyes. Dana added this item to the database of the Deep Sky Hunters amateur astronomers group, believing it was a planetary nebula – the quiet remnant of stars in mass similar to the sun. He named it PA 30.

However, professional astronomers who picked it up from there realized that this object is far more than it first seemed. It is, they now believe, the remnant of a lost supernova observed in 1181. And an extremely rare type at that.

Continue reading “An Amateur Astronomer Discovered One-of-a-Kind Supernova Remnant”

Astronomers Have Been Watching a Supernova’s Debris Cloud Expand for Decades with Hubble

This is a Hubble image of a very small region of the Cygnus Loop, a supernova remnant. The image shows a small part of the leading edge of the expanding bubble. Image Credit: NASA, ESA, Ravi Sankrit (STScI)

Twenty thousand years ago, a star in the constellation Cygnus went supernova. Like all supernovae, the explosion released a staggering amount of energy. The explosion sent a powerful shockwave into the surrounding space at half a million miles per hour, and it shows no signs of slowing down.

For twenty years, the Hubble Space Telescope has been watching some of the action.

Continue reading “Astronomers Have Been Watching a Supernova’s Debris Cloud Expand for Decades with Hubble”

The Dark Energy Camera Captures the Remains of an Ancient Supernova

The US DOE's DECam captured this image of the tattered shell of the first-ever recorded supernova. A ring of glowing debris is all that remains of a white dwarf star that exploded more than 1800 years ago and was recorded by Chinese astronomers as a ‘guest star’. This special image, which covers an impressive 45 arcminutes on the sky, gives a rare view of the entirety of this supernova remnant. Image Credit: CTIO/NOIRLab/DOE/NSF/AURA T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller (Gemini Observatory/NSF’s NOIRLab), M. Zamani & D. de Martin (NSF’s NOIRLab)

The first written record of a supernova comes from Chinese astrologers in the year 185. Those records say a ‘guest star’ lit up the sky for about eight months. We now know that it was a supernova.

All that remains is a ring of debris named RCW 86, and astronomers working with the DECam (Dark Energy Camera) used it to examine the debris ring and the aftermath of the supernova.

Continue reading “The Dark Energy Camera Captures the Remains of an Ancient Supernova”

A new Hubble Image Reveals a Shredded Star in a Nearby Galaxy

The latest composite image of supernova remnant DEM L 190, released in November 2022. Credit: ESA/Hubble & NASA, S. Kulkarni, Y. Chu

The Hubble Space Telescope, to which we owe our current estimates for the age of the universe and the first detection of organic matter on an exoplanet, is very much doing science and still alive. It’s latest masterpiece remixes an old hit – apparently a growing trend in space science as well as space music.

Continue reading “A new Hubble Image Reveals a Shredded Star in a Nearby Galaxy”

Star Formation Simulated in the lab, Using Lasers, of Course

Illustration of the evolution of a massive cloud which indicates the importance of SNR propagation in forming new stars. CREDIT: Albertazzi et al.

The vacuum of space isn’t really a vacuum. A vacuum is defined by Merriam-Webster as “a space absolutely devoid of matter.” However, even empty space has some matter in it. This matter, in the form of dust and gas, tends to collect into what are called molecular clouds. Without anything interfering with them they continue to float as a cloud.

When something happens to interrupt the balance of the molecular cloud, some of that dust and gas starts clumping together. As more and more of this dust and gas clump together gravity takes over and starts forming stars. One way that the balance of a molecular cloud can be interfered with is by a supernova remnant, the remains of an exploded star. Plasma jets, radiation, and other clouds can also interact with these clouds.

Continue reading “Star Formation Simulated in the lab, Using Lasers, of Course”

Supernova Remnant Cassiopeia A is Lopsided

Coloured image of Cassiopeia A based on data from the space telescopes Hubble, Spitzer and Chandra. Image Credit: NASA/JPL-Caltech [via Wikimedia]

Cassiopeia A is the remnant of a supernova that exploded 11,000 light-years away. The light from the exploding star likely reached Earth around 1670 (only a couple of years before Newton invented the reflecting telescope.) But there are no records of it because the optical light didn’t reach Earth.

The Cass A nebula ripples with energy and light from the ancient explosion and is one of the most-studied objects in deep space. It’s an expanding gas shell blasted into space when its progenitor star exploded.

But Cass A isn’t expanding evenly, and astronomers think they know why.

Continue reading “Supernova Remnant Cassiopeia A is Lopsided”

The Debris Cloud From a Supernova Shows an Imprint of the Actual Explosion

Computer models are continuing to play an increasing role in scientific discovery.  Everything from the first moments after the Big Bang to potential for life to form on other planets has been the target of some sort of computer model.  Now scientists from the RIKEN Astrophysical Big Bang Laboratory are turning this almost ubiquitous tool to a very violent event – Type Ia supernovae.  Their work has now resulted in a more nuanced understanding of the effects of these important events.

Continue reading “The Debris Cloud From a Supernova Shows an Imprint of the Actual Explosion”

An All-Sky X-Ray Survey Finds the Biggest Supernova Remnant Ever Seen

Composite Image of radio and x-ray observations of the Hoinga Supernova Remnant Credit: eROSITA/MPE (X-ray), CHIPASS/SPASS/N. Hurley-Walker, ICRAR-Curtin (Radio)

Our sky is missing supernovas. Stars live for millions or billions of years. But given the sheer number of stars in the Milky Way, we should still expect these cataclysmic stellar deaths every 30-50 years. Few of those explosions will be within naked-eye-range of Earth. Nova is from the Latin meaning “new”. Over the last 2000 years, humans have seen about seven “new” stars appear in the sky – some bright enough to be seen during the day – until they faded after the initial explosion. While we haven’t seen a new star appear in the sky for over 400 years, we can see the aftermath with telescopes – supernova remnants (SNRs) – the hot expanding gases of stellar explosions. SNRs are visible up to a 150,000 years before fading into the Galaxy. So, doing the math, there should be about 1200 visible SNRs in our sky but we’ve only managed to find about 300. That was until “Hoinga” was recently discovered. Named after the hometown of first author Scientist Werner Becker, whose research team found the SNR using the eROSITA All-Sky X-ray survey, Hoinga is one of the largest SNRs ever seen.

Composite of the X-ray (pink) and radio (blue) image of Hoinga. The X-rays discovered by eROSITA are emitted by the hot debris of the exploded progenitor star. Radio antennae on Earth detect radiation emission from electrons in the outer shell of the supernova
Credit: eROSITA/MPE (X-ray), CHIPASS/SPASS/N. Hurley-Walker, ICRAR-Curtin (Radio)
Continue reading “An All-Sky X-Ray Survey Finds the Biggest Supernova Remnant Ever Seen”

A New Supernova Remnant Found from an Exploding White Dwarf Star

Astronomers have spotted the remnant of a rare type of supernova explosion. It’s called a Type Iax supernova, and it’s the result of an exploding white dwarf. These are relatively rare supernovae, and astronomers think they’re responsible for creating many heavy elements.

They’ve found them in other galaxies before, but this is the first time they’ve spotted one in the Milky Way.

Continue reading “A New Supernova Remnant Found from an Exploding White Dwarf Star”