Mining the Moon to extract its resources is a critical step on humanity’s path into the solar system. One of the most common resources on the Moon is considered relatively valuable here on Earth – titanium. At $10,000 a ton, it is one of the more valuable metals used in various industries, such as aerospace and nanotechnology. So, could we utilize titanium from the Moon to supply Earth’s economy with more of this valuable material? That question is the focus of a paper from researchers at Uppsala University in Finland.
Continue reading “How Accessible is Titanium On The Moon?”What’s the Best Material for a Lunar Tower?
Physical infrastructure on the Moon will be critical to any long-term human presence there as both America and China gear up for a sustained human lunar presence. Increasingly, a self-deploying tower is one of the most essential parts of that physical infrastructure. These towers can hold numerous pieces of equipment, from solar panels to communications arrays, and the more weight they can hold in the lunar gravity, the more capable they become. So it’s essential to understand the best structural set-up for these towers, which is the purpose of a recent paper by researchers at North Carolina State University and NASA’s Langley Research Center.
Continue reading “What’s the Best Material for a Lunar Tower?”Could You Find What A Lunar Crater Is Made Of By Shooting It?
Americans are famously fond of their guns. So it should come as no surprise that a team of NASA scientists has devised a way to “shoot” a modified type of sensor into the soil of an otherworldly body and determine what it is made out of. That is precisely what Sang Choi and Robert Moses from NASA’s Langley Research Center did, though their bullets are miniaturized spectrometers rather than hollow metal casings.
Continue reading “Could You Find What A Lunar Crater Is Made Of By Shooting It?”An Ambitious Mission to Neptune Could Study Both the Planet and Triton
Mission concepts to the outer solar system are relatively common, as planetary scientists are increasingly frustrated by our lack of knowledge of the farthest planets. Neptune, the farthest known planet, was last visited by Voyager 2 in the 1980s. Technologies have advanced a lot since that probe was launched in 1977. But to utilize that better technology, we first need to have a mission arrive in the system – and one such mission is being developed over a series of papers by ConEx Research and University College London.
Continue reading “An Ambitious Mission to Neptune Could Study Both the Planet and Triton”Can a Greenhouse with a Robotic Arm Feed the Next Lunar Astronauts?
Continuous human habitation of the Moon is the state aim of many major space-faring nations in the coming decades. Reaching that aim requires many tasks, but one of the most fundamental is feeding those humans. Shipping food consistently from Earth will likely be prohibitively expensive shortly, so DLR, Germany’s space agency, is working on an alternative. This semi-autonomous greenhouse can be used to at least partially feed the astronauts in residence on the Moon. To support that goal, a team of researchers from DLR released a paper about EVE, a robotic arm intended to help automate the operations of the first lunar greenhouse, at the IEEE Aerospace conference in March.
Continue reading “Can a Greenhouse with a Robotic Arm Feed the Next Lunar Astronauts?”Polaris Dawn is Away, Sending Another Crew Into Orbit to Perform the First Private Spacewalk
We’ve officially entered a new era of private spaceflight. Yesterday, the crew of Polaris Dawn, a privately funded mission managed by SpaceX, officially performed the first private extra-vehicular activity, commonly known as a spacewalk. The spacewalk was a success, along with the rest of the mission so far. But it’s attracted detractors as well as supporters. Let’s take a look at the mission objectives and why some pundits are opposed to it.
Continue reading “Polaris Dawn is Away, Sending Another Crew Into Orbit to Perform the First Private Spacewalk”Space Stations Get Pretty Moldy. How Can We Prevent it?
Ask any property inspector, and they’ll tell you one of the maxims of their profession – where there’s moisture, there’s mold. That relationship also holds true for the International Space Station. The interior climate on the ISS is carefully controlled, but if thrown out of whack, potentially dangerous mold could sprout overnight. A new paper by researchers at The Ohio State University explains why – and provides some insights into how we might prevent it if it does happen.
Continue reading “Space Stations Get Pretty Moldy. How Can We Prevent it?”What Did We Learn From Manufacturing the ACS3 Solar Sail Mission?
We recently reported on the successful deployment of the solar sail of the Advanced Composite Solar Sail System (ACS3) technology demonstration mission. That huge achievement advances one of the most important technologies available to CubeSats – a different form of propulsion. But getting there wasn’t easy, and back in May, a team of engineers from NASA’s Langley Research Center who worked on ACS3 published a paper detailing the trials and tribulations they went through to prepare the mission for prime time. Let’s take a look at what they learned.
Continue reading “What Did We Learn From Manufacturing the ACS3 Solar Sail Mission?”Using A Space Elevator To Get Resources Off the Queen of the Asteroid Belt
Here at UT, we’ve had several stories that describe the concept of a space elevator. They are designed to make it easier to get objects off Earth and into space. That, so far, has proven technically or economically infeasible, as no material is strong enough to support the structure passively, and it’s too energy-intensive to support it actively. However, it could be more viable on other worlds, such as the Moon. But what about worlds farther afield? A student team from the University of Colorado at Colorado Springs looked at the use case of a space elevator on Ceres and found that it could be done with existing technology.
Continue reading “Using A Space Elevator To Get Resources Off the Queen of the Asteroid Belt”What Type of Excavator Is Most Suitable for Asteroids?
Digging in the ground is so commonplace on Earth that we hardly ever think of it as hard. But doing so in space is an entirely different proposition. On some larger worlds, like the Moon or Mars, it would be broadly similar to how digging is done on Earth. But their “milligravity” would make the digging experience quite different on the millions of asteroids in our solar system. Given the potential economic impact of asteroid mining, there have been plenty of suggested methods on how to dig on an asteroid, and a team from the University of Arizona recently published the latest in a series of papers about using a customized bucket wheel to do so.
Continue reading “What Type of Excavator Is Most Suitable for Asteroids?”