TESS Finds a New Mars-Sized Planet (With the Density of Mercury)

An artist's illustration of a hypothetical exoplanet orbiting a red dwarf. Image Credit: NASA/ESA/G. Bacon (STScI)
An artist's illustration of a hypothetical exoplanet orbiting a red dwarf. Image Credit: NASA/ESA/G. Bacon (STScI)

Some planets orbit their stars so closely that they have extremely high surface temperatures and extremely rapid orbits. Most of the ones astronomers have found are Hot Jupiters— planets in the size range of Jupiter and with similar compositions as Jupiter. Their size and proximity to their star make them easier to spot using the transit method.

But there’s another type of planet that also orbits very close to their stars and has extremely high surface temperatures. They’re small, rocky, and they orbit their star in less than 24 hours. They’re called ultra-short-period (USP) planets and TESS found one that orbits its star in only eight hours.

And the planet’s density is almost equivalent to pure iron.

Continue reading “TESS Finds a New Mars-Sized Planet (With the Density of Mercury)”

BepiColombo Meets Mercury for the First Time on October 1

New research suggests that Mercury is still contracting and shrinking. Credits: NASA/JHUAPL/Carnegie Institution of Washington/USGS/Arizona State University

BepiColombo made a quick visit to Venus in August and is on to its next rendezvous. On October 1st it’ll perform a flyby of Mercury, the spacecraft’s eventual destination. This visit is just a little flirtation—one of six—ahead of its eventual orbital link-up with Mercury in late 2025.

The quick visit will yield some scientific results, though, and they’ll be just a taste of what’s ahead in BepiColumbo’s one-year mission to Mercury.

Continue reading “BepiColombo Meets Mercury for the First Time on October 1”

It’s Time to Send a Lander to Mercury

So much in the astronomy community revolves around the decadal survey.  Teams of dozens of scientists put hundreds of hours developing proposals that eventually try to impact the recommendations of the survey panel that influence billions of dollars in research funding over the following decade.  And right now is the prime time to get those proposals in.  One of the most ambitious is sponsored by a team led by researchers at John Hopkins University Applied Physics Laboratory (APL).  Their suggestion – it’s time to land on Mercury.

Continue reading “It’s Time to Send a Lander to Mercury”

An Asteroid has Been Discovered That Crosses Mercury’s Orbit

The fastest orbital period asteroid in the Solar System has been discovered at NOIRLab’s CTIO using the powerful 570-megapixel Dark Energy Camera (DECam) in Chile — the Sun’s new nearest neighbor. The illustration shows the locations of the planets and asteroid on the discovery night of 13 August 2021, as they would be seen from a vantage point above the Solar System (north). Credit: CTIO/NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

Astronomers have spotted the fastest-ever asteroid orbiting Sun — and at times, it gets closer to the Sun than the planet Mercury.

Continue reading “An Asteroid has Been Discovered That Crosses Mercury’s Orbit”

Who was Giuseppe ‘Bepi’ Colombo and why Does he Have a Spacecraft Named After him?

Astronomers have an excellent habit of naming large projects after deserving contributors to their field.  From Nancy Grace Roman to Edwin Hubble, some of the biggest missions are named after space exploration pioneers. When ESA and JAXA sat down to figure out a name for their new Mercury probe, they would have come across an important name early in their research – Giuseppe “Bepi” Colombo – the man who helped plan the Mariner 10 Mercury mission.

Continue reading “Who was Giuseppe ‘Bepi’ Colombo and why Does he Have a Spacecraft Named After him?”

Does Mercury Have a big Iron Core Because it’s so Close to the Sun’s Magnetic Field?

Magnetic fields are great for lots of things – directing explorers, levitating trains, and containing nuclear fusion reactions are just an example of what these invisible forces can do.  Now we can ascribe another feature to magnetic fields – they can give planets a rocky core.

Continue reading “Does Mercury Have a big Iron Core Because it’s so Close to the Sun’s Magnetic Field?”

MESSENGER Saw a Meteoroid Strike Mercury

Artist’s illustration depicting how MESSENGER observed the first meteoroid impact on another planet’s surface. Particles (neutral atoms) ejected by the meteoroid skyrocketed over 3,000 miles above Mercury’s surface, outside the bow shock of Mercury’s magnetosphere. There, photons of light turned the neutral particles into charged particles (ions), which one of MESSENGER’s instruments could detect. Credit: modified from Jacek Zmarz

Telescopes have captured meteoroids hitting the Moon and several spacecraft imaged Comet Shoemaker–Levy 9 smacking into Jupiter in 1994. But impacts as they happen on another rocky world have never been observed.

However, the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) mission may have seen an impact take place back in 2013. In looking at archival data from the mission, scientists found evidence of a meteoroid impact on Mercury.  While this data isn’t a ‘no-doubt’ photo of the event, it does tell scientists more about impacts and how they affect Mercury’s wispy-thin atmosphere.

Continue reading “MESSENGER Saw a Meteoroid Strike Mercury”

How did the Earth get its water? The answer might be found on Mercury

Artist's conception of early planetary formation from gas and dust around a young star. Outbursts from newborn and adolescent stars might drive planetary water beneath the surface of rocky worlds. Credit: NASA/NASA/JPL-Caltech

I don’t know if you’ve noticed by now, but the Earth is a little bit wet. How Earth got all its water is one of the major mysteries in the formation of the solar system, and a team of Japanese researchers have just uncovered a major clue. But not on Earth – the clue is on Mercury.

Continue reading “How did the Earth get its water? The answer might be found on Mercury”

BepiColombo captured images of Earth during its recent flyby

Farewell! Even though the BepiColombo mission launched for Mercury in 2018, it’s still hanging around the Earth – at least, briefly, as shown in this stunning image recently released by the European Space Agency.

In the image, the Earth hangs serenely in between BepiColumbo’s magnetometer boom (on the right) and its medium-gain antenna (on the left).

But the Earth flyby wasn’t without its tense moments. The spacecraft relies on solar power, and during the loop around Earth it had to spend some time in our planet’s shadow – and out of the sun. To prepare, the mission scientists made sure that BepiColombo was fully charged and nice and warm before the maneuver.

And on April 10, the date of the flyby, it all went swimmingly.

The spacecraft is on a long, winding journey sunwards towards the smallest planet in the solar system, making loop after loop first around Earth, then Venus a couple times, then Mercury itself half a dozen times before parking itself in orbit. The frequent loops are necessary because at launch BepiColombo was traveling at the same speed as the Earth in its orbit (29.78 km/s), and needs to match that of Mercury (47.36 km/s), and it does so by borrowing some energy from the planets themselves.

Once BepiColombo reaches Mercury, it will separate into two individual probes: the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter. The twin orbiters will attempt to answer several challenging riddles about the planet nearest to the sun, like the origins of Mercury’s faint-but-still-there magnetic field and atmosphere, and the craters pitting its surface.

But it will take a long time to get there. BepiColombo’s final arrival at Mercury isn’t scheduled until December of 2025, showing how reaching the inner planets of our system can be sometimes more difficult than journeys outward – it turns out that doing planetary dances is more challenging than you might think.