Observations by DESI Open the Door to Modified Gravity Models

The relations between various approaches of modified gravity. Credit: J. M. Ezquiaga and M. Zumalacárregui (2018)

The standard theory of cosmology is based upon four things: the structure of space and time, matter, dark matter, and dark energy. Of these, dark energy is the one we currently understand the least. Within the standard model, dark energy is part of the structure of space and time as described by general relativity. It is uniform throughout the cosmos and expressed as a parameter known as the cosmological constant. But initial observations from the Dark Energy Spectroscopic Instrument (DESI) suggest the rate of comic expansion may vary over time. If further observations reinforce this, it could open up cosmological models to alternatives to general relativity known as modified gravity.

Continue reading “Observations by DESI Open the Door to Modified Gravity Models”

Cosmology is at a Crossroads, But New Instruments are Coming to Help

Illustration of the accelerating expansion of the universe. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

Our understanding of the Universe is profound. Only a century ago, astronomers held a Great Debate to argue over whether our galaxy was an island universe, or whether nebulae such as Andromeda were galaxies in a much larger cosmos. Now we know that the Universe is billions of years old, ever expanding to billions of light-years across, and filled with not just stars and galaxies but with dark energy and cold dark matter. Astronomers summarize this understanding as the LCDM model, which is the standard model of cosmology. While the observational data we have strongly supports this model, it is not without its challenges.

Continue reading “Cosmology is at a Crossroads, But New Instruments are Coming to Help”

MeerKAT Confirms the Gravitational Wave Background of the Universe in Record Time

A MeerKAT antenna disk in front of an illustrated view of black holes and gravitational waves. Credit: Carl Knox, OzGrav, Swinburne University of Technology and South African Radio Astronomy Observatory

The Universe is a turbulent place. Stars are exploding, neutron stars collide, and supermassive black holes are merging. All of these things and many more create gravitational waves. As a result, the cosmos is filled with a rippling sea of gravitational vibrations. While we have been able to directly detect gravitational waves since 2016, gravitational wave astronomy is still in its infancy. We have only been able to observe the gravitational ripples of colliding stellar black holes. Even then, all we can really detect is the final gravitational chirp created in the last moments of merging.

Continue reading “MeerKAT Confirms the Gravitational Wave Background of the Universe in Record Time”

Maybe Venus Was Never Habitable

Earth and Venus. Why are they so different and what do the differences tell us about rocky exoplanet habitability? Image Credit: NASA

Although they are very different today, Venus, Earth, and Mars were very similar in their youth. All three were warm, with thick, water-rich atmospheres. But over time, Mars became a cold, dry planet with a thin atmosphere, and Venus became superheated, with a crushing, toxic sky. Only Earth became a warm ocean world teeming with life. But why?

Continue reading “Maybe Venus Was Never Habitable”

White Dwarfs Could Have Habitable Planets, Detectable by JWST

An Earth-sized remnant of a Sun-like star is ringed by dust and debris. Credit: NASA’s Goddard Space Flight Center/Scott Wiessinger

In a few billion years, our Sun will die. It will first enter a red giant stage, swelling in size to perhaps the orbit of Earth. Its outer layers will be cast off into space, while its core settles to become a white dwarf. Life on Earth will boil away, and our planet itself might be consumed by the Sun. White dwarfs are the fate of all midsize stars, and given the path of their demise, it seems reasonable to assume that any planets die with their sun. But the fate of white dwarf planets may not be lifeless after all.

Continue reading “White Dwarfs Could Have Habitable Planets, Detectable by JWST”

What's Inside Uranus and Neptune? A New Way to Find Out

Artist expoded view of an ice giant planet similar to Uranus and Neptune. Credit: @iammoteh/Quanta magazine

In our search for exoplanets, we’ve found that many of them fall into certain types or categories, such as Hot Jupiters, Super-Earths, and Ice Giants. While we don’t have any examples of the first two in our solar system, we do have two Ice Giants: Uranus and Neptune. They are mid-size gas planets formed in the cold outer regions of the solar system. Because of this, they are rich in water and other volatile compounds, and they are very different from large gas giants such as Jupiter. We still have a great deal to learn about these worlds, but what we’ve discovered so far has been surprising, such as the nature of their magnetic fields.

Continue reading “What's Inside Uranus and Neptune? A New Way to Find Out”

Interstellar Objects Can't Hide From Vera Rubin

Artist impression of the interstellar comet 2I/Borisov as it travels through our solar system. Credit: NRAO/AUI/NSF, S. Dagnello

We have studied the skies for centuries, but we have only found two objects known to come from another star system. The first interstellar object to be confirmed was 1I/2017 U1, more commonly known as ?Oumuamua. It was discovered with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and stood out because of its large proper motion. Because ?Oumuamua swept through the inner solar system, it was relatively easy to distinguish. The second interstellar object, 2I/Borisov, stood out because it entered the inner solar system from well above the orbital plane. But while we have only discovered two alien visitors so far, astronomers think interstellar objects are common. It’s estimated that several of them visit our solar system each year, and there may be thousands within the orbit of Neptune on any given day. They just don’t stand out, so we don’t notice them. But that could soon change.

Continue reading “Interstellar Objects Can't Hide From Vera Rubin”

Asteroid Samples Returned to Earth Were Immediately Colonized by Bacteria

Electron microscope images of sample A0180, showing the presence of life. Credit: Genge, et al

We’ve known for a while that complex chemistry occurs in space. Organic molecules have been detected in cold molecular clouds, and we have even found sugars and amino acids, the so-called “building blocks of life,” within several asteroids. The raw ingredients of terrestrial life are common in the Universe, and meteorites and comets may have even seeded Earth with those ingredients. This idea isn’t controversial. But there is a more radical idea that Earth was seeded not just with the building blocks of life but life itself. It’s known as panspermia, and a recent study has brought the idea back to popular science headlines. But the study is more subtle and interesting than some headlines suggest.

Continue reading “Asteroid Samples Returned to Earth Were Immediately Colonized by Bacteria”

Fantastic New Image of the Sombrero Galaxy From Webb

NASA’s James Webb Space Telescope recently imaged the Sombrero Galaxy, resolving the clumpy nature of the dust along the galaxy’s outer ring. Credit: NASA, ESA, CSA, STScI

NGC 4594 is an unusual galaxy. It was discovered in 1781 by Pierre Méchain, and is striking because of a symmetrical ring of dust that encircles the visible halo of the galaxy. Images taken of the galaxy in 2003 show this dusty ring in detail, where it almost resembles the brim of a large hat. So it’s understandable that NGC 4594 is more commonly known as the Sombrero Galaxy. Now the James Webb Space Telescope has captured an amazingly sharp image of the galaxy, and it’s revealing some interesting surprises.

Continue reading “Fantastic New Image of the Sombrero Galaxy From Webb”

Einstein Predicted How Gravity Should Work at the Largest Scales. And He Was Right

The sparkling band of the Milky Way Galaxy backdrops the Nicholas U. Mayall 4-meter Telescope, located at Kitt Peak National Observatory. Credit: KPNO/NOIRLab/NSF/AURA/R.T. Sparks

When Albert Einstein introduced his theory of general relativity in 1915, it changed the way we viewed the Universe. His gravitational model showed how Newtonian gravity, which had dominated astronomy and physics for more than three centuries, was merely an approximation of a more subtle and elegant model. Einstein showed us that gravity is not a mere force but is rather the foundation of cosmic structure. Gravity, Einstein said, defined the structure of space and time itself.

Continue reading “Einstein Predicted How Gravity Should Work at the Largest Scales. And He Was Right”