One of the great unsolved mysteries of cosmology is known as the Hubble tension. It stems from our inability to pin down the precise rate of cosmic expansion. There are several ways to calculate this expansion, from observing distant supernovae to measuring the Doppler shift of maser light near supermassive black holes, and they all give slightly different results. Maybe we don’t fully understand the structure of the Universe, or maybe our view of the heavens is biased given that we are located deep within a galactic supercluster. As a new study shows, the bias problem is even worse than we thought.
Continue reading “If You Account for the Laniakea Supercluster, The Hubble Tension Might Be Even Larger”Colliding Neutron Stars Could Help Measure the Expansion of the Universe

According to some in the astrophysical community, there has been something of a “Crisis in Cosmology” in recent years. Though astronomers are all aware that the Universe is in a state of expansion, there has been some inconsistency when measuring the rate of it (aka. the Hubble Constant). This issue arises from the Cosmic Distance Ladder, where astronomers use different methods to measure relative distances over longer scales. This includes making local distance estimates using parallax measurements, nearby variable stars, and supernovae (“standard candles”).
They also conduct redshift measurements of the Cosmic Microwave Background (CMB), the relic radiation left over from the Big Bang, to determine cosmological distances. The discrepancy between these two methods is known as the “Hubble Tension,” and astronomers are eager to resolve it. In a recent study, an international team of astrophysicists from the Niels Bohr Institute suggested a novel method for measuring cosmic expansion. They argue that by observing colliding neutron stars (kilonovae), astronomers can relieve the tension and obtain consistent measurements of the Hubble Constant.
Continue reading “Colliding Neutron Stars Could Help Measure the Expansion of the Universe”It's Going to Take More Than Early Dark Energy to Resolve the Hubble Tension
Our best understanding of the Universe is rooted in a cosmological model known as LCDM. The CDM stands for Cold Dark Matter, where most of the matter in the universe isn’t stars and planets, but a strange form of matter that is dark and nearly invisible. The L, or Lambda, represents dark energy. It is the symbol used in the equations of general relativity to describe the Hubble parameter, or the rate of cosmic expansion. Although the LCDM model matches our observations incredibly well, it isn’t perfect. And the more data we gather on the early Universe, the less perfect it seems to be.
Continue reading “It's Going to Take More Than Early Dark Energy to Resolve the Hubble Tension”JWST is the Perfect Machine to Resolve the Hubble Tension
You’ve just found the perfect work desk at a garage sale, and you measure it to see if it will fit in your apartment. You brought a tape measure to size it up and find it’s 180 cm. Perfect. But your friend also brought a tape measure, and they find it’s 182 cm, which would be a smidge too long. You don’t know which tape measure is right, so you have a conundrum. Astronomers also have a conundrum, and it’s known as the Hubble tension.
Continue reading “JWST is the Perfect Machine to Resolve the Hubble Tension”The First Light in the Universe Helps Build a Dark Matter Map

In the 1960s, astronomers began noticing a pervasive microwave background visible in all directions. Thereafter known as the Cosmic Microwave Background (CMB), the existence of this relic radiation confirmed the Big Bang theory, which posits that all matter was condensed onto a single point of infinite density and extreme heat that began expanding ca. 13.8 years ago. By measuring the CMB for redshift and comparing these to local distance measurements (using variable stars and supernovae), astronomers have sought to measure the rate at which the Universe is expanding.
Around the same time, scientists observed that the rotational curves of galaxies were much higher than their visible mass suggested. This meant that either Einstein’s Theory of General Relativity was wrong or the Universe was filled with a mysterious, invisible mass. In a new series of papers, members of the Atacama Cosmology Telescope (ACT) collaboration have used background light from the CMB to create a new map of Dark Matter distribution that covers a quarter of the sky and extends deep into the cosmos. This map confirms General Relativity and its predictions for how mass alters the curvature of spacetime.
Continue reading “The First Light in the Universe Helps Build a Dark Matter Map”Could a Dark Energy Phase Change Relieve the Hubble Tension?

According to the most widely-accepted cosmological theories, the Universe began roughly 13.8 billion years ago in a massive explosion known as the Big Bang. Ever since then, the Universe has been in a constant state of expansion, what astrophysicists know as the Hubble Constant. For decades, astronomers have attempted to measure the rate of expansion, which has traditionally been done in two ways. One consists of measuring expansion locally using variable stars and supernovae, while the other involves cosmological models and redshift measurements of the Cosmic Microwave Background (CMB).
Unfortunately, these two methods have produced different values over the past decade, giving rise to what is known as the Hubble Tension. To resolve this discrepancy, astronomers believe that some additional force (like “Early Dark Energy“) may have been present during the early Universe that we haven’t accounted for yet. According to a team of particle physicists, the Hubble Tension could be resolved by a “New Early Dark Energy” (NEDE) in the early Universe. This energy, they argue, would have experienced a phase transition as the Universe began to expand, then disappeared.
Continue reading “Could a Dark Energy Phase Change Relieve the Hubble Tension?”“Early Dark Energy” Could Explain the Crisis in Cosmology
In 1916, Einstein finished his Theory of General Relativity, which describes how gravitational forces alter the curvature of spacetime. Among other things, this theory predicted that the Universe is expanding, which was confirmed by the observations of Edwin Hubble in 1929. Since then, astronomers have looked farther into space (and hence, back in time) to measure how fast the Universe is expanding – aka. the Hubble Constant. These measurements have become increasingly accurate thanks to the discovery of the Cosmic Microwave Background (CMB) and observatories like the Hubble Space Telescope.
Astronomers have traditionally done this in two ways: directly measuring it locally (using variable stars and supernovae) and indirectly based on redshift measurements of the CMB and cosmological models. Unfortunately, these two methods have produced different values over the past decade. As a result, astronomers have been looking for a possible solution to this problem, known as the “Hubble Tension.” According to a new paper by a team of astrophysicists, the existence of “Early Dark Energy” may be the solution cosmologists have been looking for.
Continue reading ““Early Dark Energy” Could Explain the Crisis in Cosmology”