JunoCam Wows Us Again With Detailed Images of the Great Red Spot

JunoCam captured these images of the Great Red Spot during the July 2017 fly-by of Jupiter. The composite images provide a richly-detailed look at the storm. Image: Sánchez-Lavega et al. 2018; composed by G. Eichstadt and J. Cowart

For almost 200 years humans have been watching the Great Red Spot (GRS) on Jupiter and wondering what’s behind it. Thanks to NASA’s Juno mission, we’ve been getting better and better looks at it. New images from JunoCam reveal some of the deeper detail in our Solar System’s longest-lived storm.

Continue reading “JunoCam Wows Us Again With Detailed Images of the Great Red Spot”

Jupiter’s Atmospheric Bands Go Surprisingly Deep

For centuries, astronomers have been observing Jupiter swirling surface and been awed and mystified by its appearance. The mystery only deepened when, in 1995, the Galileo spacecraft reached Jupiter and began studying its atmosphere in depth. Since that time, astronomers have puzzled over its colored bands and wondered if they are just surface phenomenon, or something that goes deeper.

Thanks to the Juno spacecraft, which has been orbiting Jupiter since July of 2016, scientists are now much closer to answering that question. This past week, three new studies were published based on Juno data that presented new findings on Jupiter’s magnetic field, its interior rotation, and how deep its belts extend. All of these findings are revising what scientists think of Jupiter’s atmosphere and its inner layers.

The studies were titled “Measurement of Jupiter’s asymmetric gravity field“, “Jupiter’s atmospheric jet streams extend thousands of kilometres deep” and “A suppression of differential rotation in Jupiter’s deep interior“, all of which were published in Nature on March 7th, 2018. The studies were led by Prof. Luciano Iess of Sapienza University of Rome, the second by Prof. Yohai Kaspi and Dr. Eli Galanti of the Weizmann Institute of Science, and the third by Prof. Tristan Guillot of the Observatoire de la Cote d’Azur.

Jupiter’s South Pole, taken during a Juno flyby on Dec 16th, 2017. Credit: NASA/JPL-Caltech/SwRI/MSSS/David Marriott

The research effort was led by Professo Kaspi and Dr. Galanti, who in addition to being the lead authors on the second study were co-authors on the other two. The pair have been preparing for this analysis even before Juno launched in 2011, during which time they built mathematical tools to analyze the gravitational field data and get a better grasp of Jupiter’s atmosphere and its dynamics.

All three studies were based on data gathered by Juno as it passed from one of Jupiter’s pole to the other every 53-days – a maneuver known as a “perijove”. With each pass, the probe used its advanced suite of instruments to peer beneath the surface layers of the atmosphere. In addition, radio waves emitted by the probe were measured to determine how they were shifted by the planet’s gravitational field with each orbit.

As astronomers have understood for some time, Jupiter’s jets flow in bands from east to west and west to east. In the process, they disrupt the even distribution of mass on the planet. By measuring changes in the planet’s gravity field (and thus this mass imbalance), Dr. Kaspi and Dr. Galanti’s analytical tools were able to calculate how deep the storms extend beneath the surface and what it’s interior dynamics are like.

Above all, the team expected to find anomalies because of the way the planet deviates from being a perfect sphere – which is due to how its rapid rotation squishes it slightly. However, they also looked for additional anomalies that could be explained due to the presence of powerful winds in the atmosphere.

This image from Juno’s JunoCam captured the south pole in visible light only. It’s a puzzle why the north and south poles are so similar, yet have a different number of cyclones. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

In the first study, Dr. Iess and his colleagues used precise Doppler tracking of the Juno spacecraft to conduct measurements of Jupiter’s gravity harmonics – both even and odd. What they determined was Jupiter’s magnetic field has a north-south asymmetry, which is indicative of interior flows in the atmosphere.

Analysis of this asymmetry was followed-up on in the second study, where Dr. Kaspi, Dr. Galanti and their colleagues used the variations in the planet’s gravity field to calculate the depth of Jupiter’s east-west jet streams. By measuring how these jets cause an imbalance in Jupiter’s gravity field, and even disrupt the mass of the planet, they concluded that they extend to a depth of 3000 km (1864 mi).

From all this, Prof. Guillot and his colleagues conducted the third study, where they used the previous findings about the planet’s gravitational field and jet streams and compared the results to predictions of interior models. From this, they determined that the interior of the planet rotates almost like a rigid body and that differential rotation decreases farther down.

In addition, they found that the zones of atmospheric flow extended to between 2,000 km (1243 mi) and 3,500 km (2175 mi) deep, which was consistent with the constraints obtained from the odd gravitational harmonics. This depth also corresponds to the point where electric conductivity would become large enough that magnetic drag would suppress differential rotation.

Based on their findings, the team also calculated that Jupiter’s atmosphere constitutes 1% of its total mass. For comparison, Earth’s atmosphere is less than a millionth of its total mass. Still, as Dr. Kaspi explained in Weizzmann Institute press release, this was rather surprising:

“That is much more than anyone thought and more than what has been known from other planets in the Solar System. That is basically a mass equal to three Earths moving at speeds of tens of meters per second.”

All told, these studies have shed new light on the Jupiter’s atmospheric dynamics and interior structure. At present, the subject of what resides at Jupiter’s core remains unresolved. But the researchers hope to analyze further measurements made by Juno to see whether Jupiter has a solid core and (if so) to determine its mass. This in turn will help astronomers learn a great deal about the Solar System’s history and formation.

In addition, Kaspi and Galanti are looking to use some of the same methods they developed to characterize Jupiter’s jet streams to tackle its most iconic feature – Jupiter’s Great Red Spot. In addition to determining how deep this storm extends, they also hope to learn why this storm has persisted for so many centuries, and why it has been noticeably shrinking in recent years.

The Juno mission is expected to wrap up in July of 2018. Barring any extensions, the probe will conduct a controlled deorbit into Jupiter’s atmosphere after conducting perijove 14. However, even after the mission is over, scientists will be analyzing the data it has collected for years to come. What this reveals about the Solar System’s largest planet will also go a long way towards informing out understanding of the Solar System.

Further Reading: Weizmann Institute of Science, Nature, Nature (2), Nature (3),

Juno Finds that Jupiter’s Gravitational Field is “Askew”

Since it established orbit around Jupiter in July of 2016, the Juno mission has been sending back vital information about the gas giant’s atmosphere, magnetic field and weather patterns. With every passing orbit – known as perijoves, which take place every 53 days – the probe has revealed more interesting things about Jupiter, which scientists will rely on to learn more about its formation and evolution.

During its latest pass, the probe managed to provide the most detailed look to date of the planet’s interior. In so doing, it learned that Jupiter’s powerful magnetic field is askew, with different patterns in it’s northern and southern hemispheres. These findings were shared on Wednesday. Oct. 18th, at the 48th Meeting of the American Astronomical Society’s Division of Planetary Sciencejs in Provo, Utah.

Ever since astronomers began observing Jupiter with powerful telescopes, they have been aware of its swirling, banded appearance. These colorful stripes of orange, brown and white are the result of Jupiter’s atmospheric composition, which is largely made up of hydrogen and helium but also contains ammonia crystals and compounds that change color when exposed to sunlight (aka. chromofores).

Illustration of NASA’s Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Credit: NASA/Lockheed Martin

Until now, researchers have been unclear as to whether or not these bands are confined to a shallow layer of the atmosphere or reach deep into the interior of the planet. Answering this question is one of the main goals of the Juno mission, which has been studying Jupiter’s magnetic field to see how it’s interior atmosphere works. Based on the latest results, the Juno team has concluded that hydrogen-rich gas is flowing asymmetrically deep in the planet.

These findings were also presented in a study titled Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, which appeared in the May 28th issue of Geophysical Research Letters. The study was led by Sean Wahl, a grad student from UC Berkeley, and included members from the Weizmann Institute of Science, the Southwest Research Institute (SwRI), NASA’s Goddard Space Flight Center and the Jet Propulsion Laboratory.

Another interesting find was that Jupiter’s gravity field varies with depth, which indicated that material is flowing as far down as 3,000 km (1,864 mi). Combined with information obtained during previous perijoves, this latest data suggests that Jupiter’s core is small and poorly defined. This flies in the face of previous models of Jupiter, which held that the outer layers are gaseous while the interior ones are made up of metallic hydrogen and a rocky core.

As Tristan Guillot – a planetary scientist at the Observatory of the Côte d’Azur in Nice, France, and a co-author on the study – indicated during the meeting, “This is something that was not expected. We were not sure at all whether we would be able to see that… It’s clear that giant planets have a lot of secrets.”

 

This artist's illustration shows Juno's Microwave Radiometer observing deep into Jupiter's atmosphere. The image shows real data from the 6 MWR channels, arranged by wavelength. Credit: NASA/SwRI/JPL
This artist’s illustration shows Juno’s Microwave Radiometer observing deep into Jupiter’s atmosphere. The image shows real data from the 6 MWR channels, arranged by wavelength. Credit: NASA/SwRI/JPL

But of course, more passes and data are needed in order to pinpoint how strong the flow of gases are at various depths, which could resolve the question of how Jupiter’s interior is structured. In the meantime, the Juno scientists are pouring over the probe’s gravity data hoping to see what else it can teach them. For instance, they also want to know how far the Great Red Spot extends into the amotpshere.

This anticyclonic storm, which was first spotted in the 17th century, is Jupiter’s most famous feature. In addition to being large enough to swallow Earth whole – measuring some 16,000 kilometers (10,000 miles) in diameter – wind speeds can reach up to 120 meters per second (432 km/h; 286 mph) at its edges. Already the JunoCam has snapped some very impressive pictures of this storm, and other data has indicated that the storm could run deep.

In fact, on July 10th, 2017, the Juno probe passed withing 9,000 km (5,600 mi) of the Great Red Spot, which took place during its sixth orbit (perijove six) of Jupiter. With it’s suite of eight scientific instruments directed at the storm, the probe obtained readings that indicated that the Great Red Spot could also extend hundreds of kilometers into the interior, or possibly even deeper.

As David Stevenson, a planetary scientist at the California Institute of Technology and a co-author on the study, said during the meeting, “It’s not yet clear that it is so deep it will show up in gravity data. But we’re trying”.

Jupiter’s Great Red Spot, as imaged by the Juno spacecraft’s JunoCam at a distance of just 9,000 km (5,600 mi) from the atmosphere. Credit : NASA/SwRI/MSSS/TSmith

Other big surprises which Juno has revealed since it entered orbit around Jupiter include the clusters of cyclones located at each pole. These were visible to the probe’s instruments in both the visible and infrared wavelengths as it made its first maneuver around the planet, passing from pole to pole. Since Juno is the first space probe in history to orbit the planet this way, these storms were previously unknown to scientists.

In total, Juno spotted eight cyclonic storms around the north pole and five around the south pole. Scientists were especially surprised to see these, since computer modelling suggests that such small storms would not be stable around the poles due to the planet’s swirling polar winds. The answer to this, as indicated during the presentation, may have to do with a concept known as vortex crystals.

As Fachreddin Tabataba-Vakili – a planetary scientist at NASA’s Jet Propulsion Laboratory and a co-author on the study – explained, such crystals are created when small vortices form and persist as the material in which they are embedded continues to flow. This phenomenon has been seen on Earth in the form of rotating superfluids, and Jupiter’s swirling poles may possess similar dynamics.

In the short time that Juno has been operating around Jupiter, it has revealed much about the planet’s atmosphere, interior, magnetic field and internal dynamics. Long after the mission is complete – which will take place in February of 2018 when the probe is crashed into Jupiter’s atmosphere – scientists are likely to be sifting through all the data it obtained, hoping to solve any remaining mysteries from the Solar System’s largest and most massive planet.

Further Reading: Nature

Here They are! New Juno Pictures of the Great Red Spot

Earlier this week, on Monday, July 10th, the Juno mission accomplished an historic feet as it passed directly over Jupiter’s most famous feature – the Great Red Spot. This massive anticyclonic storm has been raging for centuries, and Juno’s scheduled flyby was the closest any mission has ever come to it. It all took place at 7:06 p.m. PDT (11:06 p.m. EDT), just days after the probe celebrated its first year of orbiting the planet.

And today – Wednesday, July 12th, a few days ahead of schedule – NASA began releasing the pics that Juno snapped with its imager – the JunoCam – to the public. As part of the missions’ seventh orbit around the planet (perijove 7) these images are the closest and most detailed look of Jupiter’s Great Red Spot to date. And as you can clearly see by going to the JunoCam website, the pictures are a sight to behold!

And as always, citizen scientists and amateur astronomers are already busy processing the images. This level of public involvement in a NASA mission is something quite new. Prior to every perijove, NASA has asked for public input on what features they would like to see imaged. These Points of Interest (POIs), as they are called, are then photographed, and the public has had the option of helping to process them for public consumption.

“Great Red Spot from P7 Flyover”. Credit: NASA/SwRI/MSSS/Jason Major © public domain

As Scott Bolton – the associate VP at the Southwest Research Institute (SwRI) and the Principle Investigator (PI) of the Juno mission – said in a NASA press release, “For generations people from all over the world and all walks of life have marveled over the Great Red Spot. Now we are finally going to see what this storm looks like up close and personal.” And in just the past two days, several processed images have already come in.

Consider the images that were processed by Jason Major – an amateur astronomer and graphic designer who created the astronomy website Lights in the Dark. In the image above (his own work), we see a cropped version of the original JunoCam image in order to put Jupiter’s Great Red Spot center-frame. It was then color-adjusted and enhanced to mark the boundaries of the storm’s “eye” and the swirling clouds that surround it more clearly.

On his website, Major described the method he used to bring this image to life:

“[T]he image above is my first rendering made from a map-projected PNG file which centers and fully-frames the giant storm in contrast- and color-enhanced detail… The resolution is low but this is what my “high-speed” workflow is set up for—higher resolution images will take more time and I’m anticipating some incredible versions to be created and posted later today and certainly by tomorrow and Friday by some of the processing superstars in the imaging community (Kevin, Seán, Björn, Gerald, I’m looking at you!)”

Wide-frame shot of the Great Red Spot, processed to show contrast between the storm and Jupiter’s clouds. Credit: NASA/SwRI/MSSS/Jason Major © public domain

Above is another one of Major’s processed images, which was released shortly after the first one. This image shows the GRS in a larger context, using the full JunoCam image, and similarly processed to show contrasts. The same image was processed and submitted to the Juno website by amateur astronomers Amadeo Bellotti and Oliver Jenkins – though their submissions are admittedly less clear and colorful than Major’s work.

Other images include “Juno Eye“, a close up of Jupiter’s northern hemisphere that was processed by our good friend, Kevin M. Gill. Shown below, this image is a slight departure from the others (which focused intently on Jupiter’s Great Red Spot) to capture a close-up of the swirls in Jupiter’s northern polar atmosphere. Much like the GRS, these swirls are eddies that are created by Jupiter’s extremely high winds.

The Juno mission reached perijove – i.e. the point in its orbit where it is closest to Jupiter’s center – on July 10th at 6:55 p.m. PDT (9:55 p.m. EDT). At this time, it was about 3,500 km (2,200 mi) above Jupiter’s cloud tops. Eleven minutes and 33 seconds later, it was passing directly over the anticyclonic storm at a distance of about 9,000 km (5,600 mi); at which time, all eight of its instruments were trained on the feature.

In addition to the stunning array of images Juno has sent back, its suite of scientific instruments have gathered volumes of data on this gas giant. In fact, the early science results from the mission have shown just how turbulent and violent Jupiter’s atmosphere is, and revealed things about its complex interior structure, polar aurorae, its gravity and its magnetic field.

“Juno Eye”. Credit : NASA/JPL-Caltech/MSSS/SwRI/©Kevin M. Gill

The Juno mission reached Jupiter on July 5th, 2016, becoming the second probe in history to establish orbit around the planet. By the time the mission is scheduled to end in 2018 (barring any mission extensions), scientist hope to have learned a great deal about the planet’s structure and history of formation.

Given that this knowledge is likely to reveal things about the early history and formation of the Solar System, the payoffs from this mission are sure to be felt for many years to come after it is decommissioned.

In the meantime, you can check out all the processed images by going to the JunoCam sight, which is being regularly updated with new photos from Perijove 7!

Further Reading: NASA, JunoCam, Lights in the Dark

Hubble Takes Advantage Of Opposition To Snap Jupiter

On April, 7th, 2017, Jupiter will come into opposition with Earth. This means that Earth and Jupiter will be at points in their orbit where the Sun, Earth and Jupiter will all line up. Not only will this mean that Jupiter will be making its closest approach to Earth – reaching a distance of about 670 million km (416 million mi) – but the hemisphere that faces towards us will be fully illuminated by the Sun.

Because of its proximity and its position, Jupiter will be brighter in the night sky than at any other time during the year. Little wonder then why NASA and the ESA are taking advantage of this favorable alignment to capture images of the planet with the Hubble Space Telescope. Already, on April 3rd, Hubble took the wonderful color image (shown above) of Jupiter, which has now been released.

Using its Wide Field Camera 3 (WFC3), Hubble was able to observe Jupiter in the visible, ultraviolet and infrared spectrum. From these observations, members of the Hubble science team produced a final composite image that allowed features in its atmosphere – some as small as 130 km across – to be discernible. These included Jupiter’s colorful bands, as well as its massive anticyclonic storms.

Image of Jupiter’s Great Red Spot, taken by the Voyager 1 space probe during its flyby on March 5, 1979, and re-processed on November 6, 1998. Credit: NASA/JPL

The largest of these – the Great Red Spot – is believed to have been raging on the surface ever since it was first observed in the 1600s. In addition, it is estimated that the wind speeds can reach up to 120 m/s (430 km/h; 267 mph) at its outer edges. And given its dimensions – between 24-40,000 km from west to east and 12-14,000 km from south to north – it is large enough to swallow the Earth whole.

Astronomers have noticed how the storm appears to have been shrinking and expanding throughout its recorded history. And as the latest images taken by Hubble (and by ground-based telescopes) have confirmed, the storm continues to shrink. Back in 2012, it was even suggested that the Giant Red Spot might eventually disappear, and this latest evidence seems to confirm that.

No one is entirely sure why the storm is slowly collapsing; but thanks to images like these, researchers are gaining a better understanding of what mechanisms power Jupiter’s atmosphere. Aside from the Great Red Spot, the similar but smaller anticyclonic storm in the farther southern latitudes – aka. Oval BA or “Red Spot Junior” – was also captured in this latest image.

Located in the region known as the South Temperate Belt, this storm was first noticed in 2000 after three small white storms collided. Since then, the storm has increased in size, intensity and changed color (becoming red like its “big brother”). It is currently estimated that wind speeds have reached 618 km/h (384 mph), and that it has become as large as Earth itself (over 12,000 km, 7450 mi in diameter).

Image of Jupiter, made during the Outer Planet Atmospheres Legacy (OPAL) programme on January 19th, 2015. Credit: NASA/ESA/A. Simon (GSFC)/M. Wong (UC Berkeley)/G. Orton (JPL-Caltech)

And then there are the color bands that make up Jupiter’s surface and give it its distinct appearance. These bands are essentially different types of clouds that run parallel to the equator and differ in color based on their chemical compositions. Whereas the whiter bands have higher concentrations of ammonia crystals, the darker (red, orange and yellow) have lower concentrations.

Similarly, these color patterns are also affected by the upwelling of compounds that change color when they are exposed to ultraviolet light from the Sun. Known as chromophores, these colorful compounds are likely made up of sulfur, phosphorous and hydrocarbons. The planet’s intense wind speeds of up to 650 km/h (~400 mph) also ensure that the bands are kept separate.

These and other observations of Jupiter are part of the Outer Planet Atmospheres Legacy (OPAL) progamme. Dedicated to ensuring that Hubble gets as much information as it can before it is retired – sometime in the 2030s or 2040s – this program ensures that time is dedicated each year to observing Jupiter and the other gas giants. From the images obtained, OPAL hopes to create maps that planetary scientists can study long after Hubble is decommissioned.

The project will ultimately observe all of the giant planets in the Solar System in a wide range of filters. The research that this enables will not only help scientists to study the atmospheres of the giant planets, but also to gain a better understanding of Earth’s atmosphere and those of extrasolar planets. The programme began in 2014 with the study of Uranus and has been studying Jupiter and Neptune since 2015. In 2018, it will begin viewing Saturn.

Further Reading: Hubble Space Telescope

By Jove: Jupiter at Opposition 2017

Jupiter from January 7th, 0217. Image credit and copyright: Fred Locklear.

Been missing the evening planets? Currently, Saturn and Venus rule the dawn, and Mars is sinking into the dusk as it recedes towards the far side of the Sun. The situation has been changing for one planet however, as Jupiter reaches opposition this week.

Jupiter in 2017

Currently in the constellation Virgo near the September equinoctial point where the celestial equator meets the ecliptic in 2017, Jupiter rules the evening skies. Orbiting the Sun once every 11.9 years, Jupiter moves roughly one zodiacal constellation eastward per year, as oppositions for Jupiter occur about once every 399 days.

As the name implies, “opposition” is simply the point at which a planet seems to rise “opposite” to the setting Sun.

At opposition 2017 on Friday, April 7th, Jupiter shines at magnitude -2.5 and is 666.5 million kilometers distant. Jupiter just passed aphelion on February 16th, 2017 at 5.46 AU 846 million kilometers from the Sun, making this and recent oppositions slightly less favorable. An April opposition for Jupiter also means it’ll now start to occur in the southern hemisphere for this and the next several years. Jupiter crosses the celestial equator northward again in 2022.

The path of Jupiter through 2017. Image credit: Starry Night.

Can you see Ganymede with the naked eye? Shining at magnitude +4.6, the moon lies just on the edge of naked eye visibility from a dark sky site… the problem is, the moon never strays more than 5′ from the dazzling limb of Jupiter. Here’s a fun and easy experiment: attempt to spot Ganymede through this month’s opposition season, using nothing more than a pair of MK-1 eyeballs. Then at the end of the month, check an ephemeris for greatest elongations of the moon. Any matches?

With binoculars, the first thing you’ll notice is the four bright Galilean moons of Io, Europa, Ganymede and Callisto. At about 10x magnification or so, Jupiter will begin to resolve as a disk. With binoculars, you get a very similar view of Jupiter as Galileo had with his primitive spy glass.

At the telescope eyepiece at low power you can see the main cloud bands of Jove, the northern and southern equatorial belts. Shadow transits and eclipses of the Jovian moons are also fun to watch, and frequent for the innermost two moons Io and Europa.  Orbiting Jupiter once every seven days, transits of Ganymede are less frequent, and outermost Callisto is the only moon that can “miss” Jupiter on occasion, as it does this year until transits resume in 2020.

Jupiter an the Great Red Spot from January 29th, 2017. Image credit and copyright: Efrain Morales.

Jupiter’s one of the best planets for imaging: unlike Venus or bashful Mars, things are actually happening on the cloudtops of Jove. You can see smaller storms come and go as the Great Red Spot make its circuit once every 10 hours. Follow Jupiter from sunset through sunrise, and it will rotate just about all the way around once. Strange to think, we’ve been using modified webcams to image Jupiter for over a decade and a half now.

Jupiter and Io from 2006. Photo by author.

The major moons of Jupiter cast shadows nearly straight back as seen from our vantage point near opposition. After opposition, the shadows of the moons and the planet itself begin to slide to one side and will continue to do so as the planet heads towards quadrature 90 degrees east of the Sun. In 2017, quadrature for Jupiter occurs on July 5th as the planet sits due south for northern hemisphere observers at sunset. Distances to Jupiter vary through opposition, quadrature and solar conjunction, and Danish astronomer Ole Rømer used discrepancies in predictions versus actual observed phenomena of Jupiter’s moons to make the first good estimation of the speed of light in 1676.

Double shadow transits are also interesting to watch, and a season of double events involving Io and Europa begins next month on May 12th.

Jupiter will rule the dusk skies until solar conjunction on October 26th, 2017.

It’s also interesting to note that while the Northern Equatorial Belt has been permanent over the last few centuries of telescopic observation, the Southern Equatorial Belt seems to pull a disappearing act roughly every decade or so. This last occurred in 2010, and we might just be due again over the next few years. The Great Red Spot has also looked a little more pale and salmon over the last few years, and may vanish altogether this century.

Finally, the Full Moon typically sits near a given planet near opposition, as occurs next week on the evening of April 10/11th.

Jupiter, the Moon and Spica on the evening of April 10th. Credit: Stellarium.

The next occultation of Jupiter by the Moon occurs on October 31st, 2019.

Don’t miss a chance to observe the king of the planets in 2017.

– Here’s a handy JoveMoons for Android and Iphone for planning your next Jovian observing session.

-Be sure to check out our complete guide to oppositions, elongations, occultations and more with our 101 Astronomical Events for 2017, a free e-book from Universe Today.

-Send those images of Jupiter in to Universe Today’s Flickr forum.

How Big is the Great Red Spot?

https://www.youtube.com/watch?v=_ABKMoWKHjo

When we used to do the Virtual Star Party (and I really need to start those up again, they were super fun), I had the worst luck with Jupiter’s Great Red Spot. Whenever Jupiter was in the sky, the Great Red Spot always eluded us. Even though we should have had a 50/50 shot at seeing the massive storm on Jupiter, it was always hiding. Why so shy Jovian storm?

Jupiter’s Great Red Spot is an enormous swirling storm located on a band of clouds just south of the planet’s equator. It’s been there as long as people have been observing Jupiter with good enough telescopes to resolve it.

Astronomers somewhat disagree exactly when that was. The first person to mention a spot on Jupiter was Robert Hooke, who described it in 1664, but he placed it in the northern hemisphere. Oops.

A more reliable account comes from Giovanni Cassini, best known for his observations of Saturn. He observed a permanent spot in roughly the same location from 1665 to 1713.

Drawings by Cassini of what is presumably the Great Red Spot in 1665
Drawings by Cassini of what is presumably the Great Red Spot in 1665

The strange part is that astronomers lost track of it until 1830, when the modern Spot we know today was clearly evident. Were they two different spots? Did the GRS disappear and the flare up again? We’ll never know.

But really, isn’t that just splitting hairs? The thought that there’s been an enormous Jovian hurricane swirling away for hundreds of years is awesome and terrifying.

Here on Earth, we classify hurricanes as Category 1 when the wind speed crosses 119 km/h. A Category 4 hurricane can hit more than 250 km/h. That’s scary fast wind speed that can tear apart buildings. The Great Red Spot, on the other hand, can reach almost 650 km/h.

How big is this thing, anyway? Trust me, it’s big, but it used to be bigger. When astronomers first started keeping accurate measurements in the late 1800s, the Great Red Spot was about 40,000 kilometers wide and 14,000 kilometers tall.

Since that time, it’s been steadily shrinking. When the Voyager spacecraft flew past in the late 1970s, the spot had shrunk to 23,000 kilometers across. In 1995 Hubble measured it as 21,000 kilometers across, and then again in 2009, it was 18,000 kilometers across. About a year ago, Hubble did another measurement, and now it’s only 16,500 kilometers wide.

I say “only”, but keep in mind that the Earth measures 12,742 kilometers across. In other words, the Great Red Spot could still swallow up an Earth with room to spare.

The Juno spacecraft isn't the first one to visit Jupiter. Galileo went there in the mid 90's, and Voyager 1 snapped a nice picture of the clouds on its mission. Image: NASA
The Juno spacecraft isn’t the first one to visit Jupiter. Galileo went there in the mid 90’s, and Voyager 1 snapped a nice picture of the clouds on its mission. Image: NASA

But this shrinking is continuing by about 930 kilometers per year. And as it shrinks, it’s changing from an oval to a more circular shape. At the same time, the color is changing too, lightening up – perhaps because the storm doesn’t dig too deeply into the lower atmospheric layers.

It’s possible that the Great Red Spot could completely disappear within our generation. And then every astronomer would fail to be able to see the Spot, just like me.

The Great Red Spot isn’t the only long lived storm on Jupiter, and this could be the reason why the Spot is disappearing.

If you look at images of Jupiter from Hubble, you can see other cyclonic storms; the biggest of which is known as Oval BA. It was first observed in 2000, after a few smaller storms collided and merged into a little red spot.

The formation of Oval BA. Credit: NASA/JPL/WFPC2
The formation of Oval BA. Credit: NASA/JPL/WFPC2

Over time, Oval BA has been getting larger and stronger, now it’s about the size of the Earth, and wind speeds have reached more than 600 km/h rivalling the Great Red Spot.

Because the bands on Jupiter alternate in directions, astronomers think that storms on the nearby bands are sapping the strength of the Great Red Spot. And perhaps they’re boosting Oval BA. There might be a time when the two spots are roughly the same size. And when the Great Red Spot finally disappears, Oval BA will be there to assume the mantle.

Since these storms can clearly grow and shrink over hundreds of years, I wonder what some of the strangest configurations of storms have ever been. I guess future robot-body Fraser will be the one to find out.

Good news! At the time that you’re watching this, NASA’s Juno spacecraft arrived at Jupiter on July 4, 2016. For the first time in more than a decade, we have a dedicated spacecraft at Jupiter, mapping, probing and analyzing the giant planet.

We should be getting more close up measurements and observations of the Great Red Spot and everything Jovian, so stay tuned, it’s going to be exciting.

Juno Transmits 1st Orbital Imagery after Swooping Arrival Over Jovian Cloud Tops and Powering Up

This color view from NASA's Juno spacecraft is made from some of the first images taken by JunoCam after the spacecraft entered orbit around Jupiter on July 4, 2016.  Credits: NASA/JPL-Caltech/SwRI/MSSS
This color view from NASA’s Juno spacecraft is made from some of the first images taken by JunoCam after the spacecraft entered orbit around Jupiter on July 4, 2016. Credits: NASA/JPL-Caltech/SwRI/MSSS

NASA’s newly arrived Jovian orbiter Juno has transmitted its first imagery since reaching orbit last week on July 4 after swooping over Jupiter’s cloud tops and powering back up its package of state-of-the-art science instruments for unprecedented research into determining the origin of our solar systems biggest planet.

The breathtaking image clearly shows the well known banded cloud tops in Jupiter’s atmosphere as well as the famous Great Red Spot and three of the humongous planet’s four largest moons — Io, Europa and Ganymede.

The ‘Galilean’ moons are annotated from left to right in the lead image.

Juno’s visible-light camera named JunoCam was turned on six days after Juno fired its main engine to slow down and be captured into orbit around Jupiter – the ‘King of the Planets’ following a nearly five year long interplanetary voyage from Earth.

The image was taken when Juno was 2.7 million miles (4.3 million kilometers) distant from Jupiter on July 10, at 10:30 a.m. PDT (1:30 p.m. EDT, 5:30 UTC), and traveling on the outbound leg of its initial 53.5-day capture orbit.

Juno came within only about 3000 miles of the cloud tops and passed through Jupiter’s extremely intense and hazardous radiation belts during orbital arrival over the north pole.

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory.  Credit: NASA/Lockheed Martin
Illustration of NASA’s Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA’s Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

The newly released JunoCam image is visible proof that Juno survived the do-or-die orbital fireworks on America’s Independence Day that placed the baskeball-court sized probe into orbit around Jupiter – and is in excellent health to carry out its groundbreaking mission to elucidate Jupiter’s ‘Genesis.’

“This scene from JunoCam indicates it survived its first pass through Jupiter’s extreme radiation environment without any degradation and is ready to take on Jupiter,” said Scott Bolton, principal investigator from the Southwest Research Institute in San Antonio, in a statement.

“We can’t wait to see the first view of Jupiter’s poles.”

Within two days of the nerve wracking and fully automated 35-minute-long Jupiter Orbital Insertion (JOI) maneuver, the Juno engineering team begun powering up five of the probes science instruments on July 6.

Animation of Juno 14-day orbits starting in late 2016.  Credits: NASA/JPL-Caltech
Animation of Juno 14-day orbits starting in late 2016. Credits: NASA/JPL-Caltech

All nonessential instruments and systems had been powered down in the final days of Juno’s approach to Jupiter to ensure the maximum chances for success of the critical JOI engine firing.

“We had to turn all our beautiful instruments off to help ensure a successful Jupiter orbit insertion on July 4,” said Bolton.

“But next time around we will have our eyes and ears open. You can expect us to release some information about our findings around September 1.”

Juno resumed high data rate communications with Earth on July 5, the day after achieving orbit.

We can expect to see more JunoCam images taken during this first orbital path around the massive planet.

But the first high resolution images are still weeks away and will not be available until late August on the inbound leg when the spacecraft returns and swoops barely above the clouds.

“JunoCam will continue to take images as we go around in this first orbit,” said Candy Hansen, Juno co-investigator from the Planetary Science Institute, Tucson, Arizona, in a statement.

“The first high-resolution images of the planet will be taken on August 27 when Juno makes its next close pass to Jupiter.”

All of JunoCams images will be released to the public.

During a 20 month long science mission – entailing 37 orbits lasting 14 days each – the probe will plunge to within about 2,600 miles (4,100 kilometers) of the turbulent cloud tops.

It will collect unparalleled new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution as it peers “beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.”

The solar powered Juno spacecraft approached Jupiter over its north pole, affording an unprecedented perspective on the Jovian system – “which looks like a mini solar system” – as it flew through the giant planets intense radiation belts in ‘autopilot’ mode.

Juno is the first solar powered probe to explore Jupiter or any outer planet.

In the final weeks of the approach JunoCam captured dramatic views of Jupiter and all four of the Galilean Moons moons — Io, Europa, Ganymede and Callisto.

At the post JOI briefing on July 5, these were combined into a spectacular JunoCam time-lapse movie released by Bolton and NASA.

Watch and be mesmerized -“for humanity, our first real glimpse of celestial harmonic motion” says Bolton.

Video caption: NASA’s Juno spacecraft captured a unique time-lapse movie of the Galilean satellites in motion about Jupiter. The movie begins on June 12th with Juno 10 million miles from Jupiter, and ends on June 29th, 3 million miles distant. The innermost moon is volcanic Io; next in line is the ice-crusted ocean world Europa, followed by massive Ganymede, and finally, heavily cratered Callisto. Galileo observed these moons to change position with respect to Jupiter over the course of a few nights. From this observation he realized that the moons were orbiting mighty Jupiter, a truth that forever changed humanity’s understanding of our place in the cosmos. Earth was not the center of the Universe. For the first time in history, we look upon these moons as they orbit Jupiter and share in Galileo’s revelation. This is the motion of nature’s harmony. Credits: NASA/JPL-Caltech/MSSS

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version just launched MUOS-5 for the US Navy on June 24.

The Juno spacecraft was built by prime contractor Lockheed Martin in Denver.

The mission will end in February 2018 with an intentional death dive into the atmosphere to prevent any possibility of a collision with Europa, one of Jupiter’s moons that is a potential abode for life.

The last NASA spacecraft to orbit Jupiter was Galileo in 1995. It explored the Jovian system until 2003.

From Earth’s perspective, Jupiter was in conjunction with Earth’s Moon shortly after JOI during the first week in July.

Personally its thrilling to realize that an emissary from Earth is once again orbiting Jupiter after a 13 year long hiatus as seen in the authors image below – coincidentally taken the same day as JunoCam’s first image from orbit.

Juno, Jupiter and the Moon as seen from I-95 over Dunn, NC on July 10, 2016. Credit: Ken Kremer/kenkremer.com
Juno, Jupiter and the Moon as seen from I-95 over Dunn, NC on July 10, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

July 15-18: “SpaceX launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA's Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina,  South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
NASA’s Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina, South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

Hubble Sees Changes in Jupiter’s Red Spot, a Weird Wisp and Rare Waves


Jupiter global map created from still images from the Hubble Space Telescope

It’s been widely reported,  including at Universe Today, that the apple of Jupiter’s eye, the iconic Great Red Spot (GRS), has been shrinking for decades. Even the rate of shrinkage has been steadily increasing.

Back in the late 1800s you could squeeze three Earths inside the GRS. Those were the days. Last May it measured just 10,250 miles (16,496 km) across, big enough for only 1.3 of us. 

And while new photos from the Hubble Space Telescope show that Jupiter’s swollen red eye has shrunk an additional 150 miles (240 km) since 2014, the good news is that the rate of shrinkage appears to be well, shrinking. The contraction of the GRS has been studied closely since the 1930s; even as recently as 1979, the Voyager spacecraft measured it at 14,500 miles (23,335 km) across. But the alarm sounded in 2012, when amateur astronomers discovered sudden increase in the rate of 580 miles (933 km) a year along with a shift in shape from oval to roughly circular.

For the moment, it appears that the GRS is holding steady, making for an even more interesting Jupiter observing season than usual. Already, the big planet dominates the eastern sky along with Venus on October mornings. Consider looking for changes in the Spot yourself in the coming months. A 6-inch or larger scope and determination are all you need.

Hubble photos of the Great Red Spot taken at on a first rotation (left frames) and 10 hours later (right frames) show the counterclockwise rotation of the newly-discovered filament or wisp inside the GRS. Credit:
Hubble photos of the Great Red Spot taken on a first rotation (left frames) and 10 hours later (right frames) show the counterclockwise rotation of the newly-discovered filament or wisp inside the GRS. Credit: NASA, ESA, A. Simon (GSFC), M. Wong (UC Berkeley), and G. Orton (JPL-Caltech)

New imagery from the Hubble OPAL program also shows a curious wisp at the center of the Great Red Spot spanning almost the entire width of the hurricane-like vortex. This filamentary streamer rotates and twists throughout the 10-hour span of the Great Red Spot image sequence, drawn out by winds that are blowing at 335 mph (540 km/hr). Color-wise, the GRS remains orange, not red. Currently, the reddest features on the planet are the North Equatorial Belt and the occasional dark, oval “barges” (cyclonic storms) in the northern hemisphere.

The newly-found waves in Jupiter's atmosphere are located in regions where cyclones are common. They look like dark eyelashes. Credit:
The newly-found waves in Jupiter’s atmosphere are located in regions where cyclones and anticyclones are common. They look like dark eyelashes. A cyclone is a storm or system of winds that rotates around an area of low pressure. Anticyclones spin around areas of high pressure. Credit: NASA, ESA, A. Simon (GSFC), M. Wong (UC Berkeley), and G. Orton (JPL-Caltech)

That’s not all. The photos uncovered a rare wave structure just north of Jupiter’s equator that’s only been seen once before and with difficulty by the Voyager 2 spacecraft in 1979. The scientists, whose findings are described in this just-published Astrophysical Journal paper, say it resembles an earthly atmospheric feature called a baroclinic wave, a large-scale meandering of the jet stream associated with developing storms.

Hubble view of Jupiter's barocyclonic clouds and those recorded earlier by Voyager 2. Credit:
Hubble view of Jupiter’s baroclinic waves on January 19, 2015 (top) and our only other view of them photographed by Voyager 2 in 1979. Credit: NASA, ESA, A. Simon (GSFC), M. Wong (UC Berkeley), and G. Orton (JPL-Caltech)

Jupiter’s “current wave” riffles across a region rich with cyclonic and anticyclonic storms. The wave may originate in a clear layer beneath Jupiter’s clouds, only becoming visible when it propagates up into the cloud deck, according to the researchers. While it’s thought to be connected to storm formation in the Jovian atmosphere, it’s a mystery why the wave hasn’t been observed more often.

The OPAL program focuses on long-term observation of the atmospheres of Jupiter, Uranus and Neptune until the end of the Saturn Cassini Mission and all four planets afterwords. We have to keep watch from Earth as no missions to Saturn and beyond are expected for quite some time. To date, Neptune and Uranus have already been observed with photos to appear (hopefully) soon in a public archive.

The Planet Neptune

Neptune photographed by Voyage. Image credit: NASA/JPL

Neptune is the eight planet from our Sun, one of the four gas giants, and one of the four outer planets in our Solar System. Since the “demotion” of Pluto by the IAU to the status of a dwarf planet – and/or Plutoid and Kuiper Belt Object (KBO) – Neptune is now considered to be the farthest planet in our Solar System.

As one of the planets that cannot be seen with the naked eye, Neptune was not discovered until relatively recently. And given its distance, it has only been observed up close on one occasion – in 1989 by the Voyager 2 spaceprobe. Nevertheless, what we’ve come to know about this gas (and ice) giant in that time has taught us much about the outer Solar System and the history of its formation.

Discovery and Naming:

Neptune’s discovery did not take place until the 19th century, though there are indications that it was observed before long that. For instance, Galileo’s drawings from December 28th, 1612, and January 27th, 1613, contained plotted points which are now known to match up with the positions of Neptune on those dates. However, in both cases, Galileo appeared to have mistaken it for a star.

1821, French astronomer Alexis Bouvard published astronomical tables for the orbit of Uranus. Subsequent observations revealed substantial deviations from the tables, which led Bouvard to hypothesize that an unknown body was perturbing Uranus’ orbit through gravitational interaction.

New Berlin Observatory at Linden Street, where Neptune was discovered observationally. Credit: Leibniz-Institut für Astrophysik Potsdam
New Berlin Observatory at Linden Street, where Neptune was discovered observationally. Credit: Leibniz-Institute for Astrophysics Potsdam

In 1843, English astronomer John Couch Adams began work on the orbit of Uranus using the data he had and produced several different estimates in the following years of the planet’s orbit. In 1845–46, Urbain Le Verrier, independently of Adams, developed his own calculations, which he shared with Johann Gottfried Galle of the Berlin Observatory. Galle confirmed the presence of a planet at the coordinates specified by Le Verrier on September 23rd, 1846.

The announcement of the discovery was met with controversy, as both Le Verrier and Adams claimed responsibility. Eventually, an international consensus emerged that both Le Verrier and Adams jointly deserved credit. However, a re-evaluation by historians in 1998 of the relevant historical documents led to the conclusion that Le Verrier was more directly responsible for the discovery and deserves the greater share of the credit.

Claiming the right of discovery, Le Verrier suggested the planet be named after himself, but this met with stiff resistance outside of France. He also suggested the name Neptune, which was gradually accepted by the international community. This was largely because it was consistent with the nomenclature of the other planets, all of which were named after deities from Greco-Roman mythology.

Neptune’s Size, Mass and Orbit:

With a mean radius of 24,622 ± 19 km, Neptune is the fourth largest planet in the Solar System and four times as large as Earth. But with a mass of 1.0243×1026 kg – which is roughly 17 times that of Earth – it is the third most massive, outranking Uranus. The planet has a very minor eccentricity of 0.0086, and orbits the Sun at a distance of 29.81 AU (4.459 x 109 km) at perihelion and 30.33 AU (4.537 x 109 km) at aphelion.

A size comparison of Neptune and Earth. Credit: NASA
A size comparison of Neptune and Earth. Credit: NASA

Neptune takes 16 h 6 min 36 s (0.6713 days) to complete a single sidereal rotation, and 164.8 Earth years to complete a single orbit around the Sun. This means that a single day lasts 67% as long on Neptune, whereas a year is the equivalent of approximately 60,190 Earth days (or 89,666 Neptunian days).

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. Also owing to its axial tilt being comparable to Earth’s is the fact that the variation in the length of its day over the course of the year is not any more extreme than it on Earth.

Neptune’s orbit also has a profound impact on the region directly beyond it, known as the Kuiper Belt (otherwise known as the “Trans-Neptunian Region”). Much in the same way that Jupiter’s gravity dominates the Asteroid Belt, shaping its structure, so Neptune’s gravity dominates the Kuiper Belt. Over the age of the Solar System, certain regions of the Kuiper belt became destabilised by Neptune’s gravity, creating gaps in the Kuiper belt’s structure.

There also exists orbits within these empty regions where objects can survive for the age of the Solar System. These resonances occur when Neptune’s orbital period is a precise fraction of that of the object – meaning they complete a fraction of an orbit for every orbit made by Neptune. The most heavily populated resonance in the Kuiper belt, with over 200 known objects, is the 2:3 resonance.

Objects in this resonance complete 2 orbits for every 3 of Neptune, and are known as plutinos because the largest of the known Kuiper belt objects, Pluto, is among them. Although Pluto crosses Neptune’s orbit regularly, the 2:3 resonance ensures they can never collide.

Neptune has a number of known trojan objects occupying both the Sun–Neptune L4 and L5 Lagrangian Points – regions of gravitational stability leading and trailing Neptune in its orbit. Some Neptune trojans are remarkably stable in their orbits, and are likely to have formed alongside Neptune rather than being captured.

Neptune’s Composition:

Due to its smaller size and higher concentrations of volatiles relative to Jupiter and Saturn, Neptune (much like Uranus) is often referred to as an “ice giant” – a subclass of a giant planet. Also like Uranus, Neptune’s internal structure is differentiated between a rocky core consisting of silicates and metals; a mantle consisting of water, ammonia and methane ices; and an atmosphere consisting of hydrogen, helium and methane gas.

The core of Neptune is composed of iron, nickel and silicates, with an interior model giving it a mass about 1.2 times that of Earth. The pressure at the center is estimated to be 7 Mbar (700 GPa), about twice as high as that at the center of Earth, and with temperatures as high as 5,400 K. At a depth of 7000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones.

The mantle is equivalent to 10 – 15 Earth masses and is rich in water, ammonia and methane. This mixture is referred to as icy even though it is a hot, dense fluid, and is sometimes called a “water-ammonia ocean”.  Meanwhile, the atmosphere forms about 5% to 10% of its mass and extends perhaps 10% to 20% of the way towards the core, where it reaches pressures of about 10 GPa – or about 100,000 times that of Earth’s atmosphere.

Composition of Neptune. Image credit: NASA
Composition of Neptune. Image credit: NASA

Increasing concentrations of methane, ammonia and water are found in the lower regions of the atmosphere. Unlike Uranus, Neptune’s composition has a higher volume of ocean, whereas Uranus has a smaller mantle.

Neptune’s Atmosphere:

At high altitudes, Neptune’s atmosphere is 80% hydrogen and 19% helium, with a trace amount of methane. As with Uranus, this absorption of red light by the atmospheric methane is part of what gives Neptune its blue hue, although Neptune’s is darker and more vivid. Because Neptune’s atmospheric methane content is similar to that of Uranus, some unknown atmospheric constituent is thought to contribute to Neptune’s more intense coloring.

Neptune’s atmosphere is subdivided into two main regions: the lower troposphere (where temperature decreases with altitude), and the stratosphere (where temperature increases with altitude). The boundary between the two, the tropopause, lies at a pressure of 0.1 bars (10 kPa). The stratosphere then gives way to the thermosphere at a pressure lower than 10-5 to 10-4 microbars (1 to 10 Pa), which gradually transitions to the exosphere.

Neptune’s spectra suggest that its lower stratosphere is hazy due to condensation of products caused by the interaction of ultraviolet radiation and methane (i.e. photolysis), which produces compounds such as ethane and ethyne. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide, which are responsible for Neptune’s stratosphere being warmer than that of Uranus.

In this image, the colors and contrasts were modified to emphasize the planet’s atmospheric features. The winds in Neptune’s atmosphere can reach the speed of sound or more. Neptune’s Great Dark Spot stands out as the most prominent feature on the left. Several features, including the fainter Dark Spot 2 and the South Polar Feature, are locked to the planet’s rotation, which allowed Karkoschka to precisely determine how long a day lasts on Neptune. (Image: Erich Karkoschka)
A modified color/contrast image emphasizing Neptune’s atmospheric features, including wind speed. Credit Erich Karkoschka)

For reasons that remain obscure, the planet’s thermosphere experiences unusually high temperatures of about 750 K (476.85 °C/890 °F). The planet is too far from the Sun for this heat to be generated by ultraviolet radiation, which means another heating mechanism is involved – which could be the atmosphere’s interaction with ion’s in the planet’s magnetic field, or gravity waves from the planet’s interior that dissipate in the atmosphere.

Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet’s magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours.

This differential rotation is the most pronounced of any planet in the Solar System, and results in strong latitudinal wind shear and violent storms. The three most impressive were all spotted in 1989 by the Voyager 2 space probe, and then named based on their appearances.

The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter. Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter life span than Jupiter’s.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL
Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

The Scooter is another storm, a white cloud group located farther south than the Great Dark Spot. This nickname first arose during the months leading up to the Voyager 2 encounter in 1989, when the cloud group was observed moving at speeds faster than the Great Dark Spot.

The Small Dark Spot, a southern cyclonic storm, was the second-most-intense storm observed during the 1989 encounter. It was initially completely dark; but as Voyager 2 approached the planet, a bright core developed and could be seen in most of the highest-resolution images.

Neptune’s Moons:

Neptune has 14 known satellites, all but one of which are named after Greek and Roman deities of the sea (S/2004 N 1 is currently unnamed). These moons are divided into two groups – the regular and irregular moons – based on their orbit and proximity to Neptune. Neptune’s Regular Moons – Naiad, Thalassa, Despina, Galatea, Larissa, S/2004 N 1, and Proteus – are those that are closest to the planet and which follow circular, prograde orbits that lie in the planet’s equatorial plane.

They range in distance from 48,227 km (Naiad) to 117,646 km (Proteus) from Neptune, and all but the outermost two (S/2004 N 1, and Proteus) orbit Neptune slower than its orbital period of 0.6713 days. Based on observational data and assumed densities, these moons range in size and mass from 96 x 60 x 52 km and 1.9 x 1017 kg (Naiad) to 436 x 416 x 402 km and 50.35 x 1017 kg (Proteus).

This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).
This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).

With the exception of Larissa and Proteus (which are largely rounded) all of Neptune’s inner moons are believed to be elongated in shape. Their spectra also indicates that they are made from water ice contaminated by some very dark material, probably organic compounds. In this respect, the inner Neptunian moons are similar to the inner moons of Uranus.

Neptune’s irregular moons consist of the planet’s remaining satellites (including Triton). They generally follow inclined eccentric and often retrograde orbits far from Neptune. The only exception is Triton, which orbits close to the planet, following a circular orbit, though retrograde and inclined.

In order of their distance from the planet, the irregular moons are Triton, Nereid, Halimede, Sao, Laomedeia, Neso and Psamathe – a group that includes both prograde and retrograde objects. With the exception of Triton and Nereid, Neptune’s irregular moons are similar to those of other giant planets and are believed to have been gravitationally captured by Neptune.

In terms of size and mass, the irregular moons are relatively consistent, ranging from approximately 40 km in diameter and 4 x 1016 kg in mass (Psamathe) to 62 km and 16 x 1016 kg for Halimede. Triton and Nereid are unusual irregular satellites and are thus treated separately from the other five irregular Neptunian moons. Between these two and the other irregular moons, four major differences have been noted.

First of all, they are the largest two known irregular moons in the Solar System. Triton itself is almost an order of magnitude larger than all other known irregular moons and comprises more than 99.5% of all the mass known to orbit Neptune (including the planet’s rings and thirteen other known moons).

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

Secondly, they both have atypically small semi-major axes, with Triton’s being over an order of magnitude smaller than those of all other known irregular moons. Thirdly, they both have unusual orbital eccentricities: Nereid has one of the most eccentric orbits of any known irregular satellite, and Triton’s orbit is a nearly perfect circle. Finally, Nereid also has the lowest inclination of any known irregular satellite

With a mean diameter of around 2700 km and a mass of 214080 ± 520 x 1017 kg, Triton is the largest of Neptune’s moons, and the only one large enough to achieve hydrostatic equilibrium (i.e. is spherical in shape). At a distance of 354,759 km from Neptune, it also sits between the planet’s inner and outer moons.

Triton follows a retrograde and quasi-circular orbit, and is composed largely of nitrogen, methane, carbon dioxide and water ices. With a geometric albedo of more than 70% and a Bond albedo as high as 90%, it is also one of the brightest objects in the Solar System. The surface has a reddish tint, owning to the interaction of ultraviolet radiation and methane, causing tholins.

Triton is also one of the coldest moons in the Solar System, with surface temperature of about 38 K (-235.2 °C). However, owing to the moon being geologically active (which results in cryovolcanism) and surface temperature variations that cause sublimation, Triton is one of only two moons in the Solar System that has a substantial atmosphere. Much like it’s surface, this atmosphere is composed primarily of nitrogen with small amounts of methane and carbon monoxide, and with an estimated pressure of about 14 nanobar.

Triton has a relatively high density of about 2 g/cm3 indicating that rocks constitute about two thirds of its mass, and ices (mainly water ice) the remaining one third. There also may be a layer of liquid water deep inside Triton, forming a subterranean ocean. Surface features include the large southern polar cap, older cratered planes cross-cut by graben and scarps, as well as youthful features caused by endogenic resurfacing.

Because of its retrograde orbit and relative proximity to Neptune (closer than the Moon is to Earth), Triton is grouped with the planet’s irregular moons (see below). In addition, it is believed to be a captured object, possibly a dwarf planet that was once part of the Kuiper Belt. At the same time, these orbital characteristics are the reason why Triton experiences tidal deceleration. and will eventually spiral inward and collide with the planet in about 3.6 billion years.

Nereid is the third-largest moon of Neptune. It has a prograde but very eccentric orbit and is believed to be a former regular satellite that was scattered to its current orbit through gravitational interactions during Triton’s capture. Water ice has been spectroscopically detected on its surface. Nereid shows large, irregular variations in its visible magnitude, which are probably caused by forced precession or chaotic rotation combined with an elongated shape and bright or dark spots on the surface.

Neptune’s Ring System:

Neptune has five rings, all of which are named after astronomers who made important discoveries about the planet – Galle, Le Verrier, Lassell, Arago, and Adams. The rings are composed of at least 20% dust (with some containing as much as 70%) while the rest of the material consists of small rocks. The planet’s rings are difficult to see because they are dark and vary in density and size.

The Galle ring was named after Johann Gottfried Galle, the first person to see the planet using a telescope; and at 41,000–43,000 km, it is the nearest of Neptune’s rings.  The La Verrier ring – which is very narrow at 113 km in width – is named after French astronomer Urbain Le Verrier, the planet’s co-founder.

At a distance of between 53,200 and 57,200 km from Neptune (giving it a width of 4,000 km) the Lassell ring is the widest of Neptune’s rings. This ring is named after William Lassell, the English astronomer who discovered Triton just seventeen days after Neptune was discovered. The Arago ring is 57,200 kilometers from the planet and less than 100 kilometers wide. This ring section is named after Francois Arago, Le Verrier’s mentor and the astronomer who played an active role in the dispute over who deserved credit for discovering Neptune.

The outer Adams ring was named after John Couch Adams, who is credited with the co-discovery of Neptune. Although the ring is narrow at only 35 kilometers wide, it is the most famous of the five due to its arcs. These arcs accord with areas in the ring system where the material of the rings is grouped together in a clump, and are the brightest and most easily observed parts of the ring system.

Although the Adams ring has five arcs, the three most famous are the “Liberty”, “Equality”, and “Fraternity” arcs. Scientists have been traditionally unable to explain the existence of these arcs because, according to the laws of motion, they should distribute the material uniformly throughout the rings. However, stronomers now estimate that the arcs are corralled into their current form by the gravitational effects of Galatea, which sits just inward from the ring.

The rings of Neptune as seen from Voyager 2 during the 1989 flyby. (Credit: NASA/JPL).
The rings of Neptune as seen from Voyager 2 during the 1989 flyby. Credit: NASA/JPL

The rings of Neptune are very dark, and probably made of organic compounds that have been altered due to exposition to cosmic radiation. This is similar to the rings of Uranus, but very different to the icy rings around Saturn. They seem to contain a large quantity of micrometer-sized dust, similar in size to the particles in the rings of Jupiter.

It’s believed that the rings of Neptune are relatively young – much younger than the age of the Solar System, and much younger than the age of Uranus’ rings. Consistent with the theory that Triton was a KBO that was seized, by Neptune’s gravity, they are believed to be the result of a collision between some of the planet’s original moons.

Exploration:

The Voyager 2 probe is the only spacecraft to have ever visited Neptune. The spacecraft’s closest approach to the planet occurred on August 25th, 1989, which took place at a distance of 4,800 km (3,000 miles) above Neptune’s north pole. Because this was the last major planet the spacecraft could visit, it was decided to make a close flyby of the moon Triton – similar to what had been done for Voyager 1s encounter with Saturn and its moon Titan.

The spacecraft performed a near-encounter with the moon Nereid before it came to within 4,400 km of Neptune’s atmosphere on August 25th, then passed close to the planet’s largest moon Triton later the same day. The spacecraft verified the existence of a magnetic field surrounding the planet and discovered that the field was offset from the center and tilted in a manner similar to the field around Uranus.

Neptune’s rotation period was determined using measurements of radio emissions and Voyager 2 also showed that Neptune had a surprisingly active weather system. Six new moons were discovered during the flyby, and the planet was shown to have more than one ring.

While no missions to Neptune are currently being planned, some hypothetical missions have been suggested. For instance, a possible Flagship Mission has been envisioned by NASA to take place sometime during the late 2020s or early 2030s. Other proposals include a possible Cassini-Huygens-style “Neptune Orbiter with Probes”, which was suggested back in 2003.

Another, more recent proposal by NASA was for Argo – a flyby spacecraft that would be launched in 2019, which would visit Jupiter, Saturn, Neptune, and a Kuiper belt object. The focus would be on Neptune and its largest moon Triton, which would be investigated around 2029.

With its icy-blue color, liquid surface, and wavy weather patterns, Neptune was appropriately named after the Roman god of the sea. And given its distance from our planet, there is still a great deal that remains to be learned about it. In the coming decades, one can only hope that a mission to the outer Solar System and/or Kuiper Belt includes a flyby of Neptune.

We have many interesting articles about Neptune here at Universe Today. Below is a comprehensive list for your viewing (and possibly researching) pleasure!

Characteristics of Neptune:

Position and Movement of Neptune:

Neptune’s Moon and Rings:

History of Neptune:

Neptune’s Surface and Structure: