The Seeming Impossibility of Life

This is an artist's illustration showing the timeline of the early universe showing some key time periods. On the left is the early day of the Universe, where the intense heat prevented much from happening. After that is the release of the CMB once the Universe cooled a little. After that, in yellow, is the Neutral Universe, the time before stars formed. The hydrogen atoms in the Neutral Universe should have given off radio waves that we can detect here on Earth. Image Credit: ESA – C. Carreau
This is an artist's illustration showing the timeline of the early universe showing some key time periods. On the left is the early day of the Universe, where the intense heat prevented much from happening. After that is the release of the CMB once the Universe cooled a little. After that, in yellow, is the neutral Universe, the time before stars formed. The hydrogen atoms in the neutral Universe should have given off radio waves that we can detect here on Earth. Image Credit: ESA – C. Carreau

The number of near misses, false starts, and legitimate disasters that have befallen our species since the day we took our first upright steps all those generations ago is too large to count and could honestly take up this entire book. I’ll give us humans this much, though: we’re survivors, through and through.

Continue reading “The Seeming Impossibility of Life”

Is the Habitable Zone Really Habitable?

Solar flares pose a major hazard to electronics and infrastructure in Low Earth Orbit, but they may have played a role in kick-starting life on Earth. Credit: NASA/SDO/J. Major

The water that life knows and needs, the water that makes a world habitable, the water that acts as the universal solvent for all the myriad and fantastically complicated chemical reactions that make us different than the dirt and rocks, can only come in one form: liquid.

Continue reading “Is the Habitable Zone Really Habitable?”

The Galactic Habitable Zone

Artist depiction of the Milky Way galaxy. Credit: Andrew Z. Colvin

Our planet sits in the Habitable Zone of our Sun, the special place where water can be liquid on the surface of a world. But that’s not the only thing special about us: we also sit in the Galactic Habitable Zone, the region within the Milky Way where the rate of star formation is just right.

Continue reading “The Galactic Habitable Zone”

Early Life Was Radically Different Than Today

Hydrothermal vents deep in Earth's oceans. Could similar types of vents power the transport of silica and other materials out from Enceladus? Credit: NOAA
Hydrothermal vents deep in Earth's oceans. Could similar types of vents power the transport of silica and other materials out from Enceladus? Credit: NOAA

All modern life shares a robust, hardy, efficient system of intertwined chemicals that propagate themselves. This system must have emerged from a simpler, less efficient, more delicate one. But what was that system, and why did it appear on, of all places, planet Earth?

Continue reading “Early Life Was Radically Different Than Today”

Why Venus Died

Venus is only slightly smaller than the Earth, and so has enjoyed billions of years of a warm heart. But for this planet, sometimes called Earth’s sister, that heat has betrayed it. That planet is now wrapped in suffocating layers of a poisonous atmosphere made of carbon dioxide and sulfuric acid. The pressures on the surface reach almost 100 times the air pressure at Earth’s sea level. The average temperatures are over 700 degrees Fahrenheit, more than hot enough to melt lead, while the deepest valleys see records of over 900 degrees.

Continue reading “Why Venus Died”

Why Mars Died

This image from ESA’s Mars Express shows the wrinkled surroundings of Olympus Mons, the largest volcano not only on Mars but in the Solar System. This feature, created by previous landslides and lava-driven rockfalls, is named Lycus Sulci. Credit: ESA/DLR/FU Berlin.

We know of Mars as the Red Planet, for its surface and atmosphere is caked in endless swirling dust of rusted iron, the rusting action provided by the always-eager oxygen. But this was not always so.

Continue reading “Why Mars Died”

Thirsty? Water is More Common than you Think

Artist rendition of a potential water-world exoplanet that might support advanced civilizations. Such life could advertise its existence via technosignatures from industrial or other activities. (Credit: ESA / Hubble / M. Kornmesser)
Artist rendition of a potential water-world exoplanet that might support life. Scientists could determine whether to explore this world based on its planetary entropy production. (Credit: ESA / Hubble / M. Kornmesser)

Water is the most common chemical molecule found throughout the entire universe. What water has going for it is that its constituents, hydrogen and oxygen, are also ridiculously common, and those two elements really enjoying bonding with each other. Oxygen has two open slots in its outmost electron orbital shell, making it very eager to find new friends, and each hydrogen comes with one spare electron, so the triple-bonding is a cinch.

Continue reading “Thirsty? Water is More Common than you Think”

Why Quantum Mechanics Defies Physics

Credit: University of Nottingham

The full, weird story of the quantum world is much too large for a single article, but the period from 1905, when Einstein first published his solution to the photoelectric puzzle, to the 1960’s, when a complete, well-tested, rigorous, and insanely complicated quantum theory of the subatomic world finally emerged, is quite the story.

Continue reading “Why Quantum Mechanics Defies Physics”

We Owe Our Lives to the Moon

Occultation
The occultation of Aldebaran by the Moon in 2016. Credit: Andrew Symes.

Life appeared on Earth through a series of lucky coincidences, and that luck started with our Moon. None of the other planets of the inner solar system have significant moons. Space is lonely around Mercury and Venus. Mars does have two small moons, Phobos and Deimos (Fear and Despair, befitting companions for the God of War), but those are simply captured asteroids, lassoed in the not-too-distant past and doomed to eventually come close enough to their unloving parent to be torn to shreds by gravitational forces.

Continue reading “We Owe Our Lives to the Moon”