How The Sun’s Scorching Corona Stays So Hot

corona

We’ve got a mystery on our hands. The surface of the sun has a temperature of about 6,000 Kelvin – hot enough to make it glow bright, hot white. But the surface of the sun is not its last later, just like the surface of the Earth is not its outermost layer. The sun has a thin but extended atmosphere called the corona. And that corona has a temperature of a few million Kelvin.

How does the corona have such a higher temperature than the surface?

Like I said, a mystery.

Continue reading “How The Sun’s Scorching Corona Stays So Hot”

Uh oh, a Recent Study Suggests that Dark Energy’s Strength is Increasing

Staring into the Darkness

The expansion of our universe is accelerating. Every single day, the distances between galaxies grows ever greater. And what’s more, that expansion rate is getting faster and faster – that’s what it means to live in a universe with accelerated expansion. This strange phenomenon is called dark energy, and was first spotted in surveys of distant supernova explosions about twenty years ago. Since then, multiple independent lines of evidence have all come to the same morose conclusion: the universe is getting fatter and fatter faster and faster.

Continue reading “Uh oh, a Recent Study Suggests that Dark Energy’s Strength is Increasing”

It Looks Like Dark Matter Can be Heated Up and Moved Around

Look at a galaxy, what do you see? Probably lots of stars. Nebulae too. And that’s probably it. A whole bunch of stars and gas in a variety of colorful assortments; a delight to the eye. And buried among those stars, if you looked carefully enough, you might find planets, black holes, white dwarves, asteroids, and all sorts of assorted chunky odds and ends. The usual galactic milieu.

What you wouldn’t see is what most of that galaxy is really made of. You wouldn’t see the invisible, the hidden. You wouldn’t see the bulk of that galactic mass. You wouldn’t see the dark matter.

Continue reading “It Looks Like Dark Matter Can be Heated Up and Moved Around”

A Guide to Hunting Zombie Stars

R Aquarii is called a symbiotic star system because of their relationship. As the white dwarf draws in material from the Red Giant, it ejects some if it in weird looping patterns, seen in this Hubble image. Image Credit: By Judy Schmidt from USA - Symbiotic System R Aquarii, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=63473035

Apparently not all supernovas work. And when they fail, they leave behind a half-chewed remnant, still burning from leftover heat but otherwise lifeless: a zombie star. Astronomers aren’t sure how many of these should-be-dead creatures lurk in the interstellar depths, but with recent simulations scientists are making a list of their telltale signatures so that future surveys can potentially track them down.

Continue reading “A Guide to Hunting Zombie Stars”

New Research Reveals How Galaxies Stay Hot and Bothered

It’s relatively easy for galaxies to make stars. Start out with a bunch of random blobs of gas and dust. Typically those blobs will be pretty warm. To turn them into stars, you have to cool them off. By dumping all their heat in the form of radiation, they can compress. Dump more heat, compress more. Repeat for a million years or so.

Eventually pieces of the gas cloud shrink and shrink, compressing themselves into a tight little knots. If the densities inside those knots get high enough, they trigger nuclear fusion and voila: stars are born.

Continue reading “New Research Reveals How Galaxies Stay Hot and Bothered”

Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons

Imagine yourself in a boat on a great ocean, the water stretching to the distant horizon, with the faintest hints of land just beyond that. It’s morning, just before dawn, and a dense fog has settled along the coast. As the chill grips you on your early watch, you catch out of the corner of your eye a lighthouse, feebly flickering through the fog.

And – yes – there! Another lighthouse, closer, its light a little stronger. As you scan the horizon more lighthouses signal the dangers of the distant coast.
Continue reading “Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons”

We May Soon Be Able To See the First, Supergiant Stars in the Universe

We need to talk about the dark ages. No, not those dark ages after the fall of the western Roman Empire. The cosmological dark ages. The time in our universe, billions of years ago, before the formation of the first stars. And we need to talk about the cosmic dawn: the birth of those first stars, a tumultuous epoch that completely reshaped the face the cosmos into its modern form.

Those first stars may have been completely unlike anything we see in the present universe. And we may, if we’re lucky, be on the cusp of seeing them for the first time.

Continue reading “We May Soon Be Able To See the First, Supergiant Stars in the Universe”

The Power of the Wobble: Finding Exoplanets in the Shifting of Starlight

They say there’s more than one way to skin an interstellar cat, and in astronomy there’s more than one way to find alien exoplanets orbiting a distant star. With the recent shut-down of NASA’s prolific Kepler mission and its windfall of discoveries, it’s time to look towards the future, and towards alternatives.

Continue reading “The Power of the Wobble: Finding Exoplanets in the Shifting of Starlight”

Scientists are Using Artificial Intelligence to See Inside Stars Using Sound Waves

NASA's Solar Dynamics Observatory has captured images of a growing dark region on the surface of the Sun. Called a coronal hole, it produces high-speed solar winds that can disrupt satellite communications. Image: Solar Dynamics Observatory / NASA

How in the world could you possibly look inside a star? You could break out the scalpels and other tools of the surgical trade, but good luck getting within a few million kilometers of the surface before your skin melts off. The stars of our universe hide their secrets very well, but astronomers can outmatch their cleverness and have found ways to peer into their hearts using, of all things, sound waves. Continue reading “Scientists are Using Artificial Intelligence to See Inside Stars Using Sound Waves”

This Star Killed its Companion and is now Escaping the Milky Way

Our universe is capable of some truly frightening scenarios, and in this case we have an apparent tragedy: two stars, lifelong companions, decide to move away from the Milky Way galaxy together. But after millions of years of adventure into intergalactic space, one star murders and consumes the other. It now continues its journey through the universe alone, much brighter than before, surrounded by a shell of leftover remnants.

At least, we think. All we have to go on right now is a crime scene.

Let’s investigate.

Continue reading “This Star Killed its Companion and is now Escaping the Milky Way”