R136 is the Most Massive Star Astronomers Have Ever Found. We Just got Some new Images of it

A cluster of massive stars seen with the Hubble Space Telescope. The cluster is surrounded by clouds of interstellar gas and dust called a nebula. The nebula, located 20,000 light-years away in the constellation Carina, contains the central cluster of huge, hot stars, called NGC 3603. Recent research shows that galactic cosmic rays flowing into our solar system originate in clusters like these. Credits: NASA/U. Virginia/INAF, Bologna, Italy/USRA/Ames/STScI/AURA

Meet R136a1, the most mass star known. Located in the Large Magellanic Cloud, it’s a hulking behemoth weighing somewhere between 150 and 200 times the mass of the Sun. Understanding the upper limit of stars helps astronomers piece together everything from the life cycles of stars to the histories of galaxies.

Continue reading “R136 is the Most Massive Star Astronomers Have Ever Found. We Just got Some new Images of it”

MIT Researchers Propose Space Bubbles to Stop Climate Change

Artist's conception of bubbles used to reduce sunlight to combat climate change (Image credit: MIT)

Climate change is a real problem. Human caused outputs of greenhouse gases like carbon dioxide and methane are the main driver of an unprecedented rise in global average temperatures at a speed never before seen in the Earth’s geologic record. The problem is so bad that any attempts to mitigate greenhouse gas emissions may be too little and too late. And so a team based at the Massachusetts Institute of Technology have proposed a radical new solution: bubbles…in space.

Continue reading “MIT Researchers Propose Space Bubbles to Stop Climate Change”

Gravitational Wave Telescopes Could Detect Clumps of Dark Matter Drifting Through the Solar System

This image shows the galaxy MCS J0416.1–2403, one of six clusters targeted by the Hubble Frontier Fields programme. The blue in this image is a mass map created by using new Hubble observations combined with the magnifying power of a process known as gravitational lensing. In red is the hot gas detected by NASA’s Chandra X-Ray Observatory and shows the location of the gas, dust and stars in the cluster. The matter shown in blue that is separate from the red areas detected by Chandra consists of what is known as dark matter, and which can only be detected directly by gravitational lensing.Credit: ESA/Hubble, NASA, HST Frontier Fields. Acknowledgement: Mathilde Jauzac (Durham University, UK) and Jean-Paul Kneib (École Polytechnique Fédérale de Lausanne, Switzerland).

Attempts to directly detect dark matter have come up empty. A team of physicists have proposed a brand new method: if dark matter exists in clumps that occasionally pass through the solar system, we may be able to detect their slight influence with ultra-sensitive gravitational waves detectors.

Continue reading “Gravitational Wave Telescopes Could Detect Clumps of Dark Matter Drifting Through the Solar System”

Earth has Clouds of Water. Hot Exoplanets Have Clouds of Sand

Artist's impression of a Lava World. The exoplanet K2-141b is so close to its host star that it likely has magma oceans and surface temperatures over 3000 degrees. c. ESO

A team of astronomers studied brown dwarfs to figure out how hot exoplanets form clouds of sand. They found that sand clouds can only exist in a narrow range of temperatures.

Continue reading “Earth has Clouds of Water. Hot Exoplanets Have Clouds of Sand”

The Gravitational Constant is Tricky to pin Down Accurately. Here’s a new way to Measure it

The central parts of our Galaxy, the Milky Way, as observed in the near-infrared with the NACO instrument on ESO's Very Large Telescope. The position of the centre, which harbours the (invisible) black hole known as Sgr A*,with a mass 4 million times that of the Sun, is marked by the orange cross. The star S2 will make a close pass around the black hole in 2018 when it will be used as a unique probe of the strong gravity and act as a test of Einstein's general theory of relativity.  

A team of physicists have used a pair of vibrating rods to measure the gravitational constant to incredibly fine precision. While the new technique has relatively high uncertainty, they hope that future improvements will provide a new pathway to nailing down this elusive constant.

Continue reading “The Gravitational Constant is Tricky to pin Down Accurately. Here’s a new way to Measure it”

A new Record for the Strongest Magnetic Field Seen in the Universe: 1.6 Billion Tesla

A massive flare ejected from a magnetar.

A team of astronomers using the Chinese Insight-HXMT x-ray telescope have made a direct measurement of the strongest magnetic field in the known universe. The magnetic field belongs to a magnetar currently in the process of cannibalizing an orbiting companion.

Continue reading “A new Record for the Strongest Magnetic Field Seen in the Universe: 1.6 Billion Tesla”

The Earliest Galaxies Rotated Slowly, Revving up Over Billions of Years

This image features the spiral galaxy NGC 691, imaged in fantastic detail by Hubble’s Wide Field Camera 3 (WFC3). This galaxy is the eponymous member of the NGC 691 galaxy group, a group of gravitationally bound galaxies that lie about 120 million light-years from Earth.  Objects such as NGC 691 are observed by Hubble using a range of filters. Each filter only allows certain wavelengths of light to reach Hubble’s WFC3. The images collected using different filters are then coloured by specialised visual artists who can make informed choices about which colour best corresponds to which filter. By combining the coloured images from individual filters, a full-colour image of the astronomical object can be recreated. In this way, we can get remarkably good insight into the nature and appearance of these objects. Links Video of the Eponymous NGC 691

A team of astronomers have used the ALMA telescope to find a slowly-rotating galaxy in the early universe. That galaxy is the youngest ever found with a measured rotation, and it’s much slower than present-day galaxies.

Continue reading “The Earliest Galaxies Rotated Slowly, Revving up Over Billions of Years”