Black Holes Simulated in a Tank of Water Reveals “Backreaction” for the First Time

It’s hard to make a black hole in the lab. You have to gather up a bunch of mass, squeeze it until it gravitationally collapses on itself, work, work, work. It’s so hard to do that we’ve never done it. We can, however, make a simulated black hole using a tank of water, and it can tell us interesting things about how black holes work.

Continue reading “Black Holes Simulated in a Tank of Water Reveals “Backreaction” for the First Time”

Physicists Figure out how to Make Gravitational Wave Detectors “Hear” 6x More Universe

Gravitational wave detectors are limited by fundamental quantum noise – an incessant “hum” that they cannot ever remove. But now physicists have recently improved a technique, called “squeezing”, that can allow the next generation of detectors to double their sensitivity.

Continue reading “Physicists Figure out how to Make Gravitational Wave Detectors “Hear” 6x More Universe”

All The Gravitational Waves Detected So Far

Few events in the astronomy community were received with more fanfare than the first detection of gravitational waves, which took place on September 14th, 2015.  Since then, different events have been recorded using the same techniques.  Many include data from other observational platforms, as the events that normally create gravitational waves are of interest to almost everyone in the astronomical community.  Black hole and neutron star mergers and the like provide a plethora of data to understand the physics that happen under such extreme conditions.

To distribute that data equitably, researchers at LIGO, one of the main observatories for gravitational waves, have released a data set that contains information about all 50 confirmed gravitational wave events that have taken place since observations began.  What’s more, a team from the Cardiff University made a tool that makes it much easier to navigate the data.  

Continue reading “All The Gravitational Waves Detected So Far”

China’s Planning to Launch a Space-Based Gravitational Wave Observatory in the 2030s: TianQin. Here’s how it’ll Stack up Against LISA

The successful detection of gravitational waves has been a game-changer for astronomy. And now the new frontier is in space, with satellite-based detection systems currently in development that will uncover some of the universe’s biggest mysteries. And while the team behind LISA is now developing that observatory in space, it just may be outclassed by a rival, TianQin, developed by the Chinese.

Continue reading “China’s Planning to Launch a Space-Based Gravitational Wave Observatory in the 2030s: TianQin. Here’s how it’ll Stack up Against LISA”

The Kilonova-Chasing Gravitational-Wave Optical Transient Observer is About to be Watching the Whole Sky

Lately there has been a flood of interest in gravitational waves.  After the first official detection at LIGO / Virgo in 2015, data has been coming in showing how common these once theoretical phenomena actually are.  Usually they are caused by unimaginably violent events, such as a merging pair of black holes.  Such events also have a tendency to emit another type of phenomena – light.  So far it has been difficult to observe any optical associated with these gravitational-wave emitting events.  But a team of researchers hope to change that with the full implementation of the Gravitation-wave Optical Transient Observer (GOTO) telescope.

Continue reading “The Kilonova-Chasing Gravitational-Wave Optical Transient Observer is About to be Watching the Whole Sky”

Black Holes Make Complex Gravitational-Wave Chirps as They Merge

Gravitational waves are produced by all moving masses, from the Earth’s wobble around the Sun to your motion as you go about your daily life. But at the moment, those gravitational waves are too small to be observed. Gravitational observatories such as LIGO and VIRGO can only see the strong gravitational waves produced by merging stellar-mass black holes.

The chirp of a gravitational merger is clear. Credit: LIGO/Caltech/MIT/University of Chicago (Ben Farr)
Continue reading “Black Holes Make Complex Gravitational-Wave Chirps as They Merge”

Behold! The Black Hole Collision Calculator!

Black holes have been the subject of intense interest ever since scientists began speculating about their existence. Originally proposed in the early 20th century as a consequence of Einstein’s Theory of General Relativity, black holes became a mainstream subject a few decades later. By 1971, the first physical evidence of black holes was found and by 2016, the existence of gravitational waves was confirmed for the first time.

This discovery touched off a new era in astrophysics, letting people know collision between massive objects (black holes and/or neutron stars) creates ripples in spacetime that can be detected light-years away. To give people a sense of how profound these events are, Álvaro Díez created the Black Hole Collision Calculator (BHCC) – a tool that lets you see what the outcome of a collision between a black hole and any astronomical object would be!

Continue reading “Behold! The Black Hole Collision Calculator!”

Could a tabletop experiment detect gravitational waves and determine the quantum nature of gravity?

Perhaps the most surprising prediction of general relativity is that of gravitational waves. Ripples in space and time that spread through the universe at the speed of light. Gravitational waves are so faint that for decades their detection was thought impossible. Even today, it takes an array of laser interferometers several kilometers long to see their effect. But what if we could detect them with a table-top experiment in a university lab?

In a recent paper published in the New Journal of Physics, a team of physicists proposes just such a device. Rather than using beams of light, they suggest using the quantum superposition of a single electron.

Continue reading “Could a tabletop experiment detect gravitational waves and determine the quantum nature of gravity?”

Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers

On the 12th of April, 2019, the LIGO and Virgo gravitational wave observatories detected the merger of two black holes. Named GW190412, one of the black holes was eight solar masses, while the other was 30 solar masses. On the 14th of August that year, an even more extreme merger was observed, when a 2.5 solar mass object merged with a black hole nearly ten times more massive. These mergers raise fundamental questions about the way black hole mergers happen.

Continue reading “Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers”