New Gravitational Waves Detected From Four More Black Hole Mergers. Total Detections up to 11 Now

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves (GWs). Since that time, multiple detections have taken place and scientific collaborations between observatories  – like Advanced LIGO and Advanced Virgo – are allowing for unprecedented levels of sensitivity and data sharing.

Previously, seven such events had been confirmed, six of which were caused by the mergers of binary black holes (BBH) and one by the merger of a binary neutron star. But on Saturday, Dec. 1st, a team of scientists the LIGO Scientific Collaboration (LSC) and Virgo Collaboration presented new results that indicated the discovery of four more gravitational wave events. This brings the total number of GW events detected in the last three years to eleven.

Continue reading “New Gravitational Waves Detected From Four More Black Hole Mergers. Total Detections up to 11 Now”

Gravitational waves were only recently observed, and now astronomers are already thinking of ways to use them: like accurately measuring the expansion rate of the Universe

Neutron stars scream in waves of spacetime when they die, and astronomers have outlined a plan to use their gravitational  agony to trace the history of the universe. Join us as we explore how to turn their pain into our cosmological profit.

Continue reading “Gravitational waves were only recently observed, and now astronomers are already thinking of ways to use them: like accurately measuring the expansion rate of the Universe”

It Could be Possible to Transfer Data Through Gravitational Waves

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) made history when they announced the first detection of gravitational waves. Originally predicted made by Einstein’s Theory of General Relativity a century prior, these waves are essentially ripples in space-time that are formed by major astronomical events – such as the merger of a binary black hole pair.

This discovery not only opened up an exciting new field of research, but has opened the door to many intriguing possibilities. One such possibility, according to a new study by a team of Russian scientists, is that gravitational waves could be used to transmit information. In much the same way as electromagnetic waves are used to communicate via antennas and satellites, the future of communications could be gravitationally-based.

Continue reading “It Could be Possible to Transfer Data Through Gravitational Waves”

Inside the Crust of Neutron Stars, There’s Nuclear Pasta; the Hardest Known Substance in the Universe

Ever since they were first discovered in the 1930s, scientists have puzzled over the mystery that is neutron stars. These stars, which are the result of a supernova explosion, are the smallest and densest stars in the Universe. While they typically have a radius of about 10 km (6.2 mi) – about 1.437 x 10-5 times that of the Sun – they also average between 1.4 and 2.16 Solar masses.

At this density, which is the same as that of atomic nuclei, a single teaspoon of neutron star material would weigh about as much as 90 million metric tons (100 million US tons). And now, a  team of scientists has conducted a study that indicates that the strongest known material in the Universe – what they refer to as “nuclear pasta” – exists deep inside the crust of neutron stars.

Continue reading “Inside the Crust of Neutron Stars, There’s Nuclear Pasta; the Hardest Known Substance in the Universe”

Last Year’s Gravitational Wave Detections Failed to Provide a Hint of Any Extra Spatial Dimensions

In August of 2017, astronomers made another major breakthrough when the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves that were believed to be caused by the merger of two neutron stars. Since that time, scientists at multiple facilities around the world have conducted follow-up observations to determine the aftermath this merger, as even to test various cosmological theories.

For instance, in the past, some scientists have suggested that the inconsistencies between Einstein’s Theory of General Relativity and the nature of the Universe over large-scales could be explained by the presence of extra dimensions. However, according to a new study by a team of American astrophysicists, last year’s kilonova event effectively rules out this hypothesis.

Continue reading “Last Year’s Gravitational Wave Detections Failed to Provide a Hint of Any Extra Spatial Dimensions”

Superfast Jet of Material Blasted Out From Last Year’s Neutron Star Merger

In August of 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected waves that were believed to be caused by a neutron star merger. This “kilonova” event, known as GW170817, was the first astronomical event to be detected in both gravitational and electromagnetic waves – including visible light, gamma rays, X-rays, and radio waves.

In the months that followed the merger, orbiting and ground-based telescopes around the world have observed GW170817 to see what has resulted from it. According to a new study by an international team of astronomers, the merger produced a narrow jet of material that made its way into interstellar space at velocities approaching the speed of light.

Continue reading “Superfast Jet of Material Blasted Out From Last Year’s Neutron Star Merger”

Okay, Last Year’s Kilonova Did Probably Create a Black Hole

In August of 2017, another major breakthrough occurred when the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected waves that were believed to be caused by a neutron star merger. Shortly thereafter, scientists at LIGO, Advanced Virgo, and the Fermi Gamma-ray Space Telescope were able to determine where in the sky this event (known as a kilonova) occurred.

This source, known as GW170817/GRB, has been the target of many follow-up surveys since it was believed that the merge could have led to the formation of a black hole. According to a new study by a team that analyzed data from NASA’s Chandra X-ray Observatory since the event, scientists can now say with greater confidence that the merger created a new black hole in our galaxy.

The study, titled “GW170817 Most Likely Made a Black Hole“, recently appeared in The Astrophysical Journal Letters. The study was led by David Pooley, an assistant professor in physics and astronomy at Trinity University, San Antonio, and included members from the University of Texas at Austin, the University of California, Berkeley, and Nazarbayev University’s Energetic Cosmos Laboratory in Kazakhstan.

Illustration of the kilonova merger (top), and the resulting object (left and right) over time. Credit: NASA/CXC/Trinity University/D. Pooley et al. Illustration: NASA/CXC/M.Weiss

For the sake of their study, the team analyzed X-ray data from Chandra taken in the days, weeks, and months after the detection of gravitational waves by LIGO and gamma rays by NASA’s Fermi mission. While nearly every telescope in the world had observed the source, X-ray data was critical to understanding what happened after the two neutron stars collided.

While a Chandra observation two to three days after the event failed to detect an X-ray source, subsequent observations taken 9, 15, and 16 days after the event resulted in detections. The source disappeared for a time as GW170817 passed behind the Sun, but additional observations were made about 110 and 160 days after the event, both of which showed significant brightening.

While the LIGO data provided astronomers with a good estimate of the resulting object’s mass after the neutron stars merged (2.7 Solar Masses), this was not enough to determine what it had become. Essentially, this amount of mass meant that it was either the most massive neutron star ever found or the lowest-mass black hole ever found (the previous record holders being four or five Solar Masses). As Dave Pooley explained in a NASA/Chandra press release:

“While neutron stars and black holes are mysterious, we have studied many of them throughout the Universe using telescopes like Chandra. That means we have both data and theories on how we expect such objects to behave in X-rays.”

Illustration of the resulting black hole caused by GW170817. Credit: NASA/CXC/M.Weiss

If the neutron stars merged to form a heavier neutron star, then astronomers would expect it to spin rapidly and generate and very strong magnetic field. This would have also created an expanded bubble of high-energy particles that would result in bright X-ray emissions. However, the Chandra data revealed X-ray emissions that were several hundred times lower than expected from a massive, rapidly-spinning neutron star.

By comparing the Chandra observations with those by the NSF’s Karl G. Jansky Very Large Array (VLA), Pooley and his team were also able to deduce that the X-ray emission were due entirely to the shock wave caused by the merger smashing into surrounding gas. In short, there was no sign of X-rays resulting from a neutron star.

This strongly implies that the resulting object was in fact a black hole. If confirmed, these results would indicate that the formation process of a blackhole can sometimes be complicated. Essentially, GW170817 would have been the result of two stars undergoing a supernova explosion that left behind two neutron stars in a sufficiently tight orbit that they eventually came together. As Pawan Kumar explained:

“We may have answered one of the most basic questions about this dazzling event: what did it make? Astronomers have long suspected that neutron star mergers would form a black hole and produce bursts of radiation, but we lacked a strong case for it until now.”

Simulated view of a black hole. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke, Radboud University

Looking ahead, the claims put forward by Pooley and his colleagues could be tested by future X-ray and radio observations. Next-generation instruments – like the Square Kilometer Array (SKA) currently under construction in South Africa and Australia, and the ESA’s Advanced Telescope for High-ENergy Astrophysics (Athena+) – would be especially helpful in this regard.

If the remnant turns out to be a massive neutron star with a strong magnetic field after all, then the source should get much brighter in the X-ray and radio wavelengths in the coming years as the high-energy bubble catches up with the decelerating shock wave. As the shock wave weakens, astronomers expect that it will continue to become fainter than it was when recently observed.

Regardless, future observations of GW170817 are bound to provide a wealth of information, according to J. Craig Wheeler, a co-author on the study also from the University of Texas. “GW170817 is the astronomical event that keeps on giving,” he said. “We are learning so much about the astrophysics of the densest known objects from this one event.”

If these follow-up observations find that a heavy neutron star is what resulted from the merger, this discovery would challenge theories about the structure of neutron stars and how massive they can get. On the other hand, if they find that it formed a tiny black hole, then it will challenge astronomers notions about the lower mass limits of black holes. For astrophysicists, it’s basically a win-win scenario.

As co-author Bruce Grossan of the University of California at Berkeley added:

“At the beginning of my career, astronomers could only observe neutron stars and black holes in our own galaxy, and now we are observing these exotic stars across the cosmos. What an exciting time to be alive, to see instruments like LIGO and Chandra showing us so many thrilling things nature has to offer.”

Indeed, looking farther out into the cosmos and deeper back in time has revealed much about the Universe that was previously unknown. And with improved instruments being developed for the sole purpose of studying astronomical phenomena in greater detail and at even greater distances, there seems to be no limit to what we might learn. And be sure to check out this video of the GW170817 merger, courtesy of the Chandra X-ray Observatory:

Further Reading: Chandra, The Astrophysical Journal Letters

How to Listen to the Background Hum of Gravitational Waves From all the Black Holes Colliding into Each Other

The first-ever detection of gravitational waves (which took place in September of 2015) triggered a revolution in astronomy. Not only did this event confirm a theory predicted by Einstein’s Theory of General Relativity a century before, it also ushered in a new era where the mergers of distant black holes, supernovae, and neutron stars could be studied by examining their resulting waves.

In addition, scientists have theorized that black hole mergers could actually be a lot more common than previously thought. According to a new study conducted by pair of researchers from Monash University, these mergers happen once every few minutes. By listening to the background noise of the Universe, they claim, we could find evidence of thousands of previously undetected events.

Their study, titled “Optimal Search for an Astrophysical Gravitational-Wave Background“, recently appeared in the journal Physical Review X. The study was conducted by Rory Smith and Eric Thrane, a senior lecturer and a research fellow at Monash University, respectively. Both researchers are also members of the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav).

Drs. Eric Thrane and Rory Smith. Credit: Monash University

As they state in their study, every 2 to 10 minutes, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these are large enough that the resulting gravitational wave event can be detected by advanced instruments like the Laser Interferometer Gravitational-Wave Observatory and Virgo observatory. The rest, however, contribute to a sort of stochastic background noise.

By measuring this noise, scientists may be able to study much more in the way of events and learn a great deal more about gravitational waves. As Dr Thrane explained in a Monash University press statement:

“Measuring the gravitational-wave background will allow us to study populations of black holes at vast distances. Someday, the technique may enable us to see gravitational waves from the Big Bang, hidden behind gravitational waves from black holes and neutron stars.”

Drs Smith and Thrane are no amateurs when it comes to the study of gravitational waves. Last year, they were both involved in a major breakthrough, where researchers from LIGO Scientific Collaboration (LSC) and the Virgo Collaboration measured gravitational waves from a pair of merging neutron stars. This was the first time that a neutron star merger (aka. a kilonova) was observed in both gravitational waves and visible light.

The pair were also part of the Advanced LIGO team that made the first detection of gravitational waves in September 2015. To date, six confirmed gravitational wave events have been confirmed by the LIGO and Virgo Collaborations. But according to Drs Thrane and Smith, there could be as many as 100,000 events happening every year that these detectors simply aren’t equipped to handle.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

These waves are what come together to create a gravitational wave background; and while the individual events are too subtle to be detected, researchers have been attempting to develop a method for detecting the general noise for years. Relying on a combination of computer simulations of faint black hole signals and masses of data from known events, Drs. Thrane and Smith claim to have done just that.

From this, the pair were able to produce a signal within the simulated data that they believe is evidence of faint black hole mergers. Looking ahead, Drs Thrane and Smith hope to apply their new method to real data, and are optimistic it will yield results. The researchers will also have access to the new OzSTAR supercomputer, which was installed last month at the Swinburne University of Technology to help scientists to look for gravitational waves in LIGO data.

This computer is different from those used by the LIGO community, which includes the supercomputers at CalTech and MIT. Rather than relying on more traditional central processing units (CPUs), OzGrav uses graphical processor units – which can be hundreds of times faster for some applications. According to Professor Matthew Bailes, the Director of the OzGRav supercomputer:

“It is 125,000 times more powerful than the first supercomputer I built at the institution in 1998… By harnessing the power of GPUs, OzStar has the potential to make big discoveries in gravitational-wave astronomy.”

What has been especially impressive about the study of gravitational waves is how it has progressed so quickly. From the initial detection in 2015, scientists from Advanced LIGO and Virgo have now confirmed six different events and anticipate detecting many more. On top of that, astrophysicists are even coming up with ways to use gravitational waves to learn more about the astronomical phenomena that cause them.

All of this was made possible thanks to improvements in instrumentation and growing collaboration between observatories. And with more sophisticated methods designed to sift through archival data for additional signals and background noise, we stand to learn a great deal more about this mysterious cosmic force.

Further Reading: Monash, Physical Review X

Dense Star Clusters Could be the Places Where Black Hole Mergers are Common

In February of 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Not only did this discovery confirm a century-old prediction made by Einstein’s Theory of General Relativity, it also confirmed the existence of stellar binary black holes – which merged to produce the signal in the first place.

And now, an international team led by MIT astrophysicist Carl Rodriguez has produced a study that suggests that  black holes may merge multiple times. According to their study, these “second-generation mergers” likely occur within globular clusters, the large and compact star clusters that typically orbit at the edges of galaxies – and which are densely-packed with hundreds of thousands to millions of stars.

The study, titled “Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers“, recently appeared in the Physical Review Letters. The study was led by Carl Rodriguez, a Pappalardo fellow in MIT’s Department of Physics and the Kavli Institute for Astrophysics and Space Research, and included members from the Institute of Space Sciences and the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

As Carl Rodriguez explained in a recent MIT press release:

“We think these clusters formed with hundreds to thousands of black holes that rapidly sank down in the center. These kinds of clusters are essentially factories for black hole binaries, where you’ve got so many black holes hanging out in a small region of space that two black holes could merge and produce a more massive black hole. Then that new black hole can find another companion and merge again.”

Globular clusters have been a source of fascination ever since astronomers first observed them in the 17th century. These spherical collections of stars are among the oldest known stars in the Universe, and can be found in most galaxies. Depending on the size and type of galaxy they orbit, the number of clusters varies, with elliptical galaxies hosting tens of thousands while galaxies like the Milky Way have over 150.

For years, Rodriguez has been investigating the behavior of black holes within globular clusters to see if they interact with their stars differently from black holes that occupy less densely-populated regions in space. To test this hypothesis, Rodriguez and his colleagues used the Quest supercomputer at Northwestern University to conduct simulations on 24 stellar clusters.

These clusters ranged in size from 200,000 to 2 million stars and covered a range of different densities and metallic compositions. The simulations modeled the evolution of individual stars within these clusters over the course of 12 billion years. This span of time was enough to follow these stars as they interacted with each other, and eventually formed black holes.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

The simulations also modeled the evolution and trajectories of black holes once they formed. As Rodriguez explained:

“The neat thing is, because black holes are the most massive objects in these clusters, they sink to the center, where you get a high enough density of black holes to form binaries. Binary black holes are basically like giant targets hanging out in the cluster, and as you throw other black holes or stars at them, they undergo these crazy chaotic encounters.”

Whereas previous simulations were based on Newton’s physics, the team decided to add Einstein’s relativistic effects into their simulations of globular clusters. This was due to the fact that gravitational waves were not predicted by Newton’s theories, but by Einstein’s Theory of General Relativity. As Rodriguez indicated, this allowed for them to see how gravitational waves played a role:

“What people had done in the past was to treat this as a purely Newtonian problem. Newton’s theory of gravity works in 99.9 percent of all cases. The few cases in which it doesn’t work might be when you have two black holes whizzing by each other very closely, which normally doesn’t happen in most galaxies… In Einstein’s theory of general relativity, where I can emit gravitational waves, then when one black hole passes near another, it can actually emit a tiny pulse of gravitational waves. This can subtract enough energy from the system that the two black holes actually become bound, and then they will rapidly merge.”

Artist’s conception shows two merging black holes similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech

What they observed was that inside the stellar clusters, black holes merge with each other to create new black holes. In previous simulations, Newtonian gravity predicted that most binary black holes would be kicked out of the cluster before they could merge. But by taking relativistic effects into account, Rodriguez and his team found that nearly half of the binary black holes merged to form more massive ones.

As Rodriguez explained, the difference between those that merged and those that were kicked out came down to spin:

“If the two black holes are spinning when they merge, the black hole they create will emit gravitational waves in a single preferred direction, like a rocket, creating a new black hole that can shoot out as fast as 5,000 kilometers per second — so, insanely fast. It only takes a kick of maybe a few tens to a hundred kilometers per second to escape one of these clusters.”

This raised another interesting fact about previous simulations, where astronomers believed that the product of any black hole merger would be kicked out of the cluster since most black holes are assumed to be rapidly spinning. However, the gravity wave measurements recently obtained from LIGO appear to contradict this, which has only detected the mergers of binary black holes with low spins.

Artist’s impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

This assumption, however, seems to contradict the measurements from LIGO, which has so far only detected binary black holes with low spins. To test the implications of this, Rodriguez and his colleagues reduced the spin rates of the black holes in their simulations. What they found was that nearly 20% of the binary black holes from clusters had at least one black hole that ranged from being 50 to 130 solar masses.

Essentially, this indicated that these were “second generation” black holes, since scientists believe that this mass cannot be achieved by a black hole that formed from a single star. Looking ahead, Rodriguez and his team anticipate that if LIGO detects an object with a mass within this range, it is likely the result of black holes merging within dense stellar cluster, rather than from a single star.

“If we wait long enough, then eventually LIGO will see something that could only have come from these star clusters, because it would be bigger than anything you could get from a single star,” Rodriguez says. “My co-authors and I have a bet against a couple people studying binary star formation that within the first 100 LIGO detections, LIGO will detect something within this upper mass gap. I get a nice bottle of wine if that happens to be true.”

The detection of gravitational waves was a historic accomplishment, and one that has enabled astronomers to conduct new and exciting research. Already, scientists are gaining new insight into black holes by studying the byproduct of their mergers. In the coming years, we can expect to learn a great deal more thanks to improve methods and increased cooperation between observatories.

Further Reading: MIT, Physical Review Letters