The Sound of an Interstellar Meteor Might Have Just Been a Rumbling Truck

Illustration of a fast blazing asteroid meteor over Earth
Illustration of a fast blazing asteroid meteor over Earth

A 2023 expedition to the Pacific Ocean, searching for debris from a suspected extraterrestrial object, may have been looking in the wrong place. A new look at the infrasound data used to locate the point of impact suggests that they may have been confused by the rumblings of a truck driving past.

Continue reading “The Sound of an Interstellar Meteor Might Have Just Been a Rumbling Truck”

Colliding Neutron Stars are the Ultimate Particle Accelerators

This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. Such a very rare event is expected to produce both gravitational waves and a short gamma-ray burst, both of which were observed on 17 August 2017 by LIGO–Virgo and Fermi/INTEGRAL respectively. Subsequent detailed observations with many ESO telescopes confirmed that this object, seen in the galaxy NGC 4993 about 130 million light-years from the Earth, is indeed a kilonova. Such objects are the main source of very heavy chemical elements, such as gold and platinum, in the Universe.

Gamma-ray telescopes observing neutron star collisions might be the key to identifying the composition of dark matter. One leading theory explaining dark matter it that is mostly made from hypothetical particles called axions. If an axion is created within the intensely energetic environment of two neutron stars merging, it should then decay into gamma-ray photons which we could see using space telescopes like Fermi-LAT.

Continue reading “Colliding Neutron Stars are the Ultimate Particle Accelerators”

The Technique for Detecting Meteors Could be Used to Find Dark Matter Particles Entering the Atmosphere

A perseid meteor, streaking across the night sky. Image credit: Andreas Möller
A Perseid meteor streaks across the sky, leaving a glowing ionized trail. Image credit: Andreas Möller, licensed under

Researchers from Ohio State University have come up with a novel method to detect dark matter, based on existing meteor-detecting technology. By using ground-based radar to search for ionization trails, similar to those produced by meteors as they streak through the air, they hope to use the Earth’s atmosphere as a super-sized particle detector. The results of experiments using this technique would help researchers to narrow down the range of possible characteristics of dark matter particles.

Continue reading “The Technique for Detecting Meteors Could be Used to Find Dark Matter Particles Entering the Atmosphere”

Many Next-Generation Telescopes are Carried on Balloons. Here's What the Next Decade Holds in Balloon Astronomy

Flying high over Antarctica, a NASA long duration balloon has broken the record for longest flight by a balloon of its size. Credits: NASA/BPO
A NASA long duration balloon prepares to carry the Super Trans-Iron Galactic Element Recorder (Super-TIGER) experiment on a long-duration flight over the South Pole Credits: NASA/BPO

NASA’s Balloon Program Analysis Group recently presented a roadmap to NASA, to guide them on how to plan and fund future balloon astronomy programs. Balloons have been used for over a century to conduct physics experiments, astronomical observations and Earth observing work, but remain relatively unknown to the general public. Balloon astronomy share many advantages with space telescopes, but at a fraction of the cost.

Continue reading “Many Next-Generation Telescopes are Carried on Balloons. Here's What the Next Decade Holds in Balloon Astronomy”

LICIACube Sends Home Images of the DART Impact and the Damage to Dimorphos

Image captured by the Italian Space Agency’s LICIACube a few minutes after the intentional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Dimorphos, captured on Sept. 26, 2022. Credits: ASI/NASA
Image captured by the Italian Space Agency’s LICIACube a few minutes after the intentional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Dimorphos, captured on Sept. 26, 2022. Credits: ASI/NASA

The Light Italian CubeSat for Imaging of Asteroids (LICIACube) has returned a series of close-up images of the asteroid Dimorphos, after last week’s successful impact of the Double Asteroid Redirect Test (DART) probe. LICIACube was built and operated by the Italian Space Agency (ASI), and was designed to capture post-impact imagery for the DART team, to help assess the effects of the impact.

Continue reading “LICIACube Sends Home Images of the DART Impact and the Damage to Dimorphos”

Stars Spiral Inward to the Cores of Stellar Nurseries

Image of NGC 346, a stellar nursery where astronomers have discovered newborn stars spiralling in towards the center of a nebula
Astronomers have been bemused to find young stars spiralling into the centre of a massive cluster of stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way. The outer arm of the spiral in this huge, oddly shaped stellar nursery — called NGC 346 — may be feeding star formation in a river-like motion of gas and stars. This is an efficient way to fuel star birth, researchers say.

Astronomers studying a stellar cluster within the Small Magellanic Cloud (SMC) have found young stars spiraling in towards the center of the cluster. The cluster, NGC 346, is an open cluster embedded within a glowing cloud of gas, which is typical of stellar nurseries – places where new stars are formed. The outer spiral arm of this star forming region appears to be funneling gas, dust and new stars into the center, which researchers describe as an efficient way to fuel the birth of new stars.

Continue reading “Stars Spiral Inward to the Cores of Stellar Nurseries”

Traveling the Solar System with Pulsar Navigation

A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.

A team of researchers at the University of Illinois Urbana-Champaign have found a way for travelers through the Solar System to work out exactly where they are, without needing help from ground-based observers on Earth. They have refined the pulsar navigation technique, which uses X-ray signals from distant pulsars, in a way similar to how GPS uses signals from a constellation of specialized satellites, to calculate an exact position .

Continue reading “Traveling the Solar System with Pulsar Navigation”