An ocean floor bacteria has been found with a totally bizarre metabolism

Bacteria come in two basic forms: the kinds that use a lot of hydrogen, and the kinds that don’t. And recently researchers think they’ve found a new bacteria that appear to do both at the same time, allowing it to live in a variety of extreme environments, like the ocean floor.

Its name is Acetobacterium woodii, often shortened to A. woodii, and it seems like it’s a superhero of the small-sized world.

Continue reading “An ocean floor bacteria has been found with a totally bizarre metabolism”

Nutrient-Poor and Energy-Starved. How Life Might Survive at the Extremes in the Solar System

Our growing understanding of extremophiles here on Earth has opened up new possibilities in astrobiology. Scientists are taking another look at resource-poor worlds that appeared like they could never support life. One team of researchers is studying a nutrient-poor region of Mexico to try to understand how organisms thrive in challenging environments.

Continue reading “Nutrient-Poor and Energy-Starved. How Life Might Survive at the Extremes in the Solar System”

Finally! Scientists Find a Place on Earth with Liquid Water But No Life

In recent years research into extremophiles has captured the interest of astrobiologists. The discovery of lifeforms in some of Earth’s most extreme environments has helped shape our thinking about extraterrestrial life. Life on other worlds may not need the kind of temperate, balanced environment that most life on Earth is adapted to.

Continue reading “Finally! Scientists Find a Place on Earth with Liquid Water But No Life”

All Life on Earth is Made up of the Same 20 Amino Acids. Scientist Now Think They Know Why

The question of how life on Earth first emerged is one that humans have been asking themselves since time immemorial. While scientists are relatively confident about when it happened, there has been no definitive answer as to why it did. How did amino acids, the chemical building blocks of life, come together roughly four billion years ago to create the first protein molecules?

While that question is still unanswered, scientists are making new discoveries that could help narrow it down. For instance, a team of researchers from the Georgia Institute of Technology’s Center for Chemical Evolution (CCT) recently conducted a study that showed how some of the earliest predecessors of the protein molecule may have spontaneously linked up to form a chain.

Continue reading “All Life on Earth is Made up of the Same 20 Amino Acids. Scientist Now Think They Know Why”

Could There Be Life in the Cloudtops of Venus?

In the search for life beyond Earth, scientists have turned up some very interesting possibilities and clues. On Mars, there are currently eight functioning robotic missions on the surface of or in orbit investigating the possibility of past (and possibly present) microbial life. Multiple missions are also being planned to explore moons like Titan, Europa, and Enceladus for signs of methanogenic or extreme life.

But what about Earth’s closest neighboring planet, Venus? While conditions on its surface are far too hostile for life as we know it there are those who think it could exist in its atmosphere. In a new study, a team of international researchers addressed the possibility that microbial life could be found in Venus’ cloud tops. This study could answer an enduring mystery about Venus’ atmosphere and lead to future missions to Earth’s “Sister Planet”.

The study, titled “Venus’ Spectral Signatures and the Potential for Life in the Clouds“, recently appeared in the journal Astrobiology. The study was led by Sanjay Limaye of the University of Wisconsin-Madison’s Space Science and Engineering Center and included members from NASA’s Ames Research Center, NASA’s Jet Propulsion Laboratory, California State Polytechnic University, the Birbal Sahni Institute of Palaeosciences, and the University of Zielona Góra.

Artist’s impression of the surface of Venus, showing its lightning storms and a volcano in the distance. Credit and ©: European Space Agency/J. Whatmore

For the sake of their study, the team considered the presence of UV contrasts in Venus’ upper atmosphere. These dark patches have been a mystery since they were first observered nearly a century ago by ground-based telescopes.  Since then, scientists have learned that they are made up of concentrated sulfuric acid and other unknown light-absorbing particles, which the team argues could be microbial life.

As Limaye indicated in a recent University of Wisconsin-Madison press statement:

“Venus shows some episodic dark, sulfuric rich patches, with contrasts up to 30 – 40 percent in the ultraviolet, and muted in longer wavelengths. These patches persist for days, changing their shape and contrasts continuously and appear to be scale dependent.”

To illustrate the possibility that these streaks are the result of microbial life, the team considered whether or not extreme bacteria could survive in Venus’ cloud tops. For instance, the lower cloud tops of Venus (47.5 to 50.5 km above the surface) are known to have moderate temperature conditions (~60 °C; 140 °F) and pressure conditions that are similar to that of Earth at sea level (101.325 kPa).

This is far more hospitable than conditions on the surface, where temperatures reach 737 K (462 C; 860 F) and atmospheric pressure is 9200 kPa (92 times that of Earth at sea level). In addition, they considered how on Earth, bacteria has been found at altitudes as high as 41 km (25 mi). On top of that, there are many cases where extreme bacteria here on Earth that could survive in an acidic environment.

A composite image of the planet Venus as seen by the Japanese probe Akatsuki. The clouds of Venus could have environmental conditions conducive to microbial life. Credit: JAXA/Institute of Space and Astronautical Science

As Rakesh Mogul, a professor of biological chemistry at California State Polytechnic University and a co-author on the study, indicated, “On Earth, we know that life can thrive in very acidic conditions, can feed on carbon dioxide, and produce sulfuric acid.” This is consistent with the presence of micron-sized sulfuric acid aerosols in Venus upper atmosphere, which could be a metabolic by-product.

In addition, the team also noted that according to some models, Venus had a habitable climate with liquid water on its surface for as long as two billion years – which is much longer than what is believed to have occurred on Mars. In short, they speculate that life could have evolved on the surface of Venus and been swept up into the atmosphere, where it survived as the planet experienced its runaway greenhouse effect.

This study expands on a proposal originally made by Harold Morowitz and famed astronomer Carl Sagan in 1967 and which was investigated by a series of probes sent to Venus between 1962 and 1978. While these missions indicated that surface conditions on Venus ruled out the possibility of life, they also noted that conditions in the lower and middle portions of Venus’ atmosphere – 40 to 60 km (25 – 27 mi) altitude – did not preclude the possibility of microbial life.

For years, Limaye has been revisiting the idea of exploring Venus’ atmosphere for signs of life. The inspiration came in part from a chance meeting at a teachers workshop with Grzegorz Slowik – from the University of Zielona Góra in Poland and a co-author on the study – who told him of how bacteria on Earth have light-absorbing properties similar to the particles that make up the dark patches observed in Venus’ clouds.

Aircraft like the Venus Atmospheric Maneuverable Platform (VAMP) could explore the cloud tops of Venus for possible signs of life. Credit: Northrop Grumman Corp

While no probe that has sampled Venus’ atmosphere has been capable of distinguishing between organic and inorganic particles, the ones that make up Venus’ dark patches do have comparable dimensions to some bacteria on Earth. According to Limaye and Mogul, these patches could therefore be similar to algae blooms on Earth, consisting of bacteria that metabolizes the carbon dioxide in Venus’ atmosphere and produces sulfuric acid aerosols.

In the coming years, Venus’ atmosphere could be explored for signs of microbial life by a lighter than air aircraft. One possibility is the Venus Aerial Mobil Platform (VAMP), a concept currently being researched by Northrop Grumman (shown above). Much like lighter-than-air concepts being developed to explore Titan, this vehicle would float and fly around in Venus’ atmosphere and search the cloud tops for biosignatures.

Another possibility is NASA’s possible participation in the Russian Venera-D mission, which is currently scheduled to explore Venus during the late 2020s. This mission would consist of a Russian orbiter and lander to explore Venus’ atmosphere and surface while NASA would contribute a surface station and maneuverable aerial platform.

Another mystery that such a mission could explore, which has a direct bearing on whether or not life may still exist on Venus, is when Venus’ liquid water evaporated. In the last billion years or so, the extensive lava flows that cover the surface have either destroyed or covered up evidence of the planet’s early history. By sampling Venus’ clouds, scientists could determine when all of the planet’s liquid water disappeared, triggering the runaway greenhouse effect that turned it into a hellish landscape.

NASA is currently investigating other concepts to explore Venus’ hostile surface and atmosphere, including an analog robot and a lander that would use a Sterling engine to turn Venus’ atmosphere into a source of power. And with enough time and resources, we might even begin contemplating building floating cities in Venus atmosphere, complete with research facilities.

Further Reading: Space Science and Engineering Center, Astrobiology

Scientists Find that Earth Bacteria Could Thrive on Enceladus

For decades, ever since the Pioneer and Voyager missions passed through the outer Solar System, scientists have speculated that life might exist within icy bodies like Jupiter’s moon Europa. However, thanks the Cassini mission, scientists now believe that other moons in the outer Solar System – such as Saturn’s moon Enceladus – could possibly harbor life as well.

For instance, Cassini observed plume activity coming from Enceladus’ southern polar region that indicated the presence of hydrothermal activity inside. What’s more, these plumes contained organic molecules and hydrated minerals, which are potential indications of life. To see if life could thrive inside this moon, a team of scientists conducted a test where strains of Earth bacteria were subjected to conditions similar to what is found inside Enceladus.

The study which details their findings recently appeared in the journal Nature Communications under the title “Biological methane production under putative Enceladus-like conditions“. The study was led by Ruth-Sophie Taubner from the University of Vienna, and included members from the Johannes Kepler University Linz, Ecotechnology Austria, the University of Bremen, and the University of Hamburg.

Artist’s rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Credit: NASA/JPL

For the sake of their study, the team chose to work with three strains of methanogenic archaea known as methanothermococcus okinawensis. This type of microorganism thrives in low-oxygen environments and consumes chemical products known to exist on Enceladus – such as methane (CH4), carbon dioxide (CO2 ) and molecular hydrogen (H2) – and emit methane as a metabolic byproduct. As they state:

“To investigate growth of methanogens under Enceladus-like conditions, three thermophilic and methanogenic strains, Methanothermococcus okinawensis (65 °C), Methanothermobacter marburgensis (65 °C), and Methanococcus villosus (80 °C), all able to fix carbon and gain energy through the reduction of CO2 with H2 to form CH4, were investigated regarding growth and biological CH4 production under different headspace gas compositions…”

These strains were selected because of their ability to grow in a temperature range that is characteristic of the vicinity around hydrothermal vents, in a chemically defined medium, and at low partial pressures of molecular hydrogen. This is consistent with what has been observed in Enceladus’ plumes and what is believed to exist within the moon’s interior.

These types of archaea can still be found on Earth today, lingering in deep-see fissures and around hydrothermal vents. In particular, the strain of M. okinawensis has been determined to exist in only one location around the deep-sea hydrothermal vent field at Iheya Ridge in the Okinawa Trough near Japan. Since this vent is located at a depth of 972 m (3189 ft) below sea level, this suggests that this strain has a tolerance toward high pressure.

Hydrothermal vents on Earth’s ocean floor. Credit: NOAA

For many years, scientists have suspected that Earth’s hydrothermal vents played a vital role in the emergence of life, and that similar vents could exist within the interior of moons like Europa, Ganymede, Titan, Enceladus, and other bodies in the outer Solar System. As a result, the research team believed that methanogenic archaea could also exist within these bodies.

After subjecting the strains to Enceladus-like temperature, pressure and chemical conditions in a laboratory environment, they found that one of the three strains was able to flourish and produce methane. The strain even managed to survive after the team introduced harsh chemicals that are present on Enceladus, and which are known to inhibit the growth of microbes. As they conclude in their study:

“In this study, we show that the methanogenic strain M. okinawensis is able to propagate and/or to produce CH4 under putative Enceladus-like conditions. M. okinawensis was cultivated under high-pressure (up to 50 bar) conditions in defined growth medium and gas phase, including several potential inhibitors that were detected in Enceladus’ plume.”

From this, they determined that some of the methane found in Enceladus’ plumes were likely produced by the presence of methanogenic microbes. As Simon Rittmann, a microbiologist at the University of Vienna and lead author of the study, explained in an interview with The Verge. “It’s likely this organism could be living on other planetary bodies,” he said. “And it could be really interesting to investigate in future missions.”

Artist impression of an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

In the coming decades, NASA and other space agencies plan to send multiple mission to the Jupiter and Saturn systems to investigate their “ocean worlds” for potential signs of life. In the case of Enceladus, this will most likely involve a lander that will set down around the southern polar region and collect samples from the surface to determine the presence of biosignatures.

Alternately, an orbiter mission may be developed that will fly through Enceladus’ plumes and collect bioreadings directly from the moon’s ejecta, thus picking up where Cassini left off. Whatever form the mission takes, the discoveries are expected to be a major breakthrough. At long last, we may finally have proof that Earth is not the only place in the Solar System where live can exist.

Be sure to check out John Michael Godier’s video titled “Encedalus and the Conditions for Life” as well:

Further Reading: The Verge, Nature

Sky Pointing Curiosity Captures Breathtaking Vista of Mount Sharp and Crater Rim, Climbs Vera Rubin Seeking Hydrated Martian Minerals

NASA’s Curiosity rover raised robotic arm with drill pointed skyward while exploring Vera Rubin Ridge at the base of Mount Sharp inside Gale Crater – backdropped by distant crater rim. This navcam camera mosaic was stitched from raw images taken on Sol 1833, Oct. 2, 2017 and colorized. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

5 years after a heart throbbing Martian touchdown, Curiosity is climbing Vera Rubin Ridge in search of “aqueous minerals” and “clays” for clues to possible past life while capturing “truly breathtaking” vistas of humongous Mount Sharp – her primary destination – and the stark eroded rim of the Gale Crater landing zone from ever higher elevations, NASA scientists tell Universe Today in a new mission update.

“Curiosity is doing well, over five years into the mission,” Michael Meyer, NASA Lead Scientist, Mars Exploration Program, NASA Headquarters told Universe Today in an interview.

“A key finding is the discovery of an extended period of habitability on ancient Mars.”

The car-sized rover soft landed on Mars inside Gale Crater on August 6, 2012 using the ingenious and never before tried “sky crane” system.

A rare glimpse of Curiosity’s arm and turret mounted skyward pointing drill is illustrated with our lead mosaic from Sol 1833 of the robot’s life on Mars – showing a panoramic view around the alien terrain from her current location in October 2017 while actively at work analyzing soil samples.

“Your mosaic is absolutely gorgeous!’ Jim Green, NASA Director Planetary Science Division, NASA Headquarters, Washington D.C., told Universe Today

“We are at such a height on Mt Sharp to see the rim of Gale Crater and the top of the mountain. Truly breathtaking.”

The rover has ascended more than 300 meters in elevation over the past 5 years of exploration and discovery from the crater floor to the mountain ridge. She is driving to the top of Vera Rubin Ridge at this moment and always on the lookout for research worthy targets of opportunity.

Additionally, the Sol 1833 Vera Rubin Ridge mosaic, stitched by the imaging team of Ken Kremer and Marco Di Lorenzo, shows portions of the trek ahead to the priceless scientific bounty of aqueous mineral signatures detected by spectrometers years earlier from orbit by NASA’s fleet of Red Planet orbiters.

NASA’s Curiosity rover as seen simultaneously on Mars surface and from orbit on Sol 1717, June 5, 2017. The robot snapped this self portrait mosaic view while approaching Vera Rubin Ridge at the base of Mount Sharp inside Gale Crater – backdropped by distant crater rim. This navcam camera mosaic was stitched from raw images and colorized. Inset shows overhead orbital view of Curiosity (blue feature) amid rocky mountainside terrain taken the same day by NASA’s Mars Reconnaissance Orbiter. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

“Curiosity is on Vera Rubin Ridge (aka Hematite Ridge) – it is the first aqueous mineral signature that we have seen from space, a driver for selecting Gale Crater,” NASA HQ Mars Lead Scientist Meyer elaborated.

“And now we have access to it.”

The Sol 1833 photomosaic illustrates Curiosity maneuvering her 7 foot long (2 meter) robotic arm during a period when she was processing and delivering a sample of the “Ogunquit Beach” for drop off to the inlet of the CheMin instrument earlier in October. The “Ogunquit Beach” sample is dune material that was collected at Bagnold Dune II this past spring.

The sample drop is significant because the drill has not been operational for some time.

“Ogunquit Beach” sediment materials were successfully delivered to the CheMin and SAM instruments over the following sols and multiple analyses are in progress.

To date three CheMin integrations of “Ogunquit Beach” have been completed. Each one brings the mineralogy into sharper focus.

Researchers used the Mastcam on NASA’s Curiosity Mars rover to gain this detailed view of layers in “Vera Rubin Ridge” from just below the ridge. The scene combines 70 images taken with the Mastcam’s right-eye, telephoto-lens camera, on Aug. 13, 2017.
Credit: NASA/JPL-Caltech/MSSS

What’s the status of the rover health at 5 years, the wheels and the drill?

“All the instruments are doing great and the wheels are holding up,” Meyer explained.

“When 3 grousers break, 60% life has been used – this has not happened yet and they are being periodically monitored. The one exception is the drill feed (see detailed update below).”

NASA’s Curiosity rover explores sand dunes inside Gale Crater with Mount Sharp in view on Mars on Sol 1611, Feb. 16, 2017, in this navcam camera mosaic, stitched from raw images and colorized. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s 1 ton Curiosity Mars Science Laboratory (MSL) rover is now closer than ever to the mineral signatures that were the key reason why Mount Sharp was chosen as the robots landing site years ago by the scientists leading the unprecedented mission.

Along the way from the ‘Bradbury Landing’ zone to Mount Sharp, six wheeled Curiosity has often been climbing. To date she has gained over 313 meters (1027 feet) in elevation – from minus 4490 meters to minus 4177 meters today, Oct. 19, 2017, said Meyer.

The low point was inside Yellowknife Bay at approx. minus 4521 meters.

VRR alone stands about 20 stories tall and gains Curiosity approx. 65 meters (213 feet) of elevation to the top of the ridge. Overall the VRR traverse is estimated by NASA to take drives totaling more than a third of a mile (570 m).

Curiosity images Vera Rubin Ridge during approach backdropped by Mount Sharp. This navcam camera mosaic was stitched from raw images taken on Sol 1726, June 14, 2017 and colorized. Credit: NASA/JPL/Marco Di Lorenzo/Ken Kremer/kenkremer.com

“Vera Rubin Ridge” or VRR is also called “Hematite Ridge.” It’s a narrow and winding ridge located on the northwestern flank of Mount Sharp. It was informally named earlier this year in honor of pioneering astrophysicist Vera Rubin.

The intrepid robot reached the base of the ridge in early September.

The ridge possesses steep cliffs exposing stratifications of large vertical sedimentary rock layers and fracture filling mineral deposits, including the iron-oxide mineral hematite, with extensive bright veins.

VRR resists erosion better than the less-steep portions of the mountain below and above it, say mission scientists.

Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

What’s ahead for Curiosity in the coming weeks and months exploring VRR before moving onward and upwards to higher elevation?

“Over the next several months, Curiosity will explore Vera Rubin Ridge,” Meyer replied.

“This will be a big opportunity to ground-truth orbital observations. Of interest, so far, the hematite of VRR does not look that different from what we have been seeing all along the Murray formation. So, big question is why?”

“The view from VRR also provides better access to what’s ahead in exploring the next aqueous mineral feature – the clay, or phyllosilicates, which can be indicators of specific environments, putting constraints on variables such as pH and temperature,” Meyer explained.

The clay minerals or phyllosilicates form in more neutral water, and are thus extremely scientifically interesting since pH neutral water is more conducive to the origin and evolution of Martian microbial life forms, if they ever existed.

How far away are the clays ahead and when might Curiosity reach them?

“As the crow flies, the clays are about 0.5 km,” Meyer replied. “However, the actual odometer distance and whether the clays are where we think they are – area vs. a particular location – can add a fair degree of variability.”

The clay rich area is located beyond the ridge.

Over the past few months Curiosity make rapid progress towards the hematite-bearing location of Vera Rubin Ridge after conducting in-depth exploration of the Bagnold Dunes earlier this year.

“Vera Rubin Ridge is a high-standing unit that runs parallel to and along the eastern side of the Bagnold Dunes,” said Mark Salvatore, an MSL Participating Scientist and a faculty member at Northern Arizona University, in a mission update.

“From orbit, Vera Rubin Ridge has been shown to exhibit signatures of hematite, an oxidized iron phase whose presence can help us to better understand the environmental conditions present when this mineral assemblage formed.”

Curiosity is using the science instruments on the mast, deck and robotic arm turret to gather detailed research measurements with the cameras and spectrometers. The pair of miniaturized chemistry lab instruments inside the belly – CheMin and SAM – are used to analyze the chemical and elemental composition of pulverized rock and soil gathered by drilling and scooping selected targets during the traverse.

A key instrument is the drill which has not been operational. I asked Meyer for a drill update.

“The drill feed developed problems retracting (two stabilizer prongs on either side of the drill retract, controlling the rate of drill penetration),” Meyer replied.

“Because the root cause has not been found (think FOD) and the concern about the situation getting worse, the drill feed has been retracted and the engineers are working on drilling without the stabilizing prongs.”

“Note, a consequence is that you can still drill and collect sample but a) there is added concern about getting the drill stuck and b) a new method of delivering sample needs to be developed and tested (the drill feed normally needs to be moved to move the sample into the chimera). One option that looks viable is reversing the drill – it does work and they are working on the scripts and how to control sample size.”

Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rover’s long term scientific expedition on the Red Planet.

“Lower Mount Sharp was chosen as a destination for the Curiosity mission because the layers of the mountain offer exposures of rocks that record environmental conditions from different times in the early history of the Red Planet. Curiosity has found evidence for ancient wet environments that offered conditions favorable for microbial life, if Mars has ever hosted life,” says NASA.

Stay tuned. In part 2 we’ll discuss the key findings from Curiosity’s first 5 years exploring the Red Planet.

As of today, Sol 1850, Oct. 19, 2017, Curiosity has driven over 10.89 miles (17.53 kilometers) since its August 2012 landing inside Gale Crater from the landing site to the ridge, and taken over 445,000 amazing images.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Map shows route driven by NASA’s Mars rover Curiosity through Sol 1827 of the rover’s mission on Mars (September 27, 2017). Numbering of the dots along the line indicate the sol number of each drive. North is up. Since touching down in Bradbury Landing in August 2012, Curiosity has driven 10.84 miles (17.45 kilometers). The base image from the map is from the High Resolution Imaging Science Experiment Camera (HiRISE) in NASA’s Mars Reconnaissance Orbiter. Credit: NASA/JPL/UA

Curiosity’s Traverse Map Through Sol 1717. This map shows the route driven by NASA’s Mars rover Curiosity through the 1717 Martian day, or sol, of the rover’s mission on Mars (June 05, 2017). The base image from the map is from the High Resolution Imaging Science Experiment Camera (HiRISE) in NASA’s Mars Reconnaissance Orbiter. Credit: NASA/JPL-Caltech/Univ. of Arizona

Dragonfly Proposed to NASA as Daring New Frontiers Mission to Titan

In late 1970s and early 80s, scientists got their first detailed look at Saturn’s largest moon Titan. Thanks to the Pioneer 11 probe, which was then followed by the Voyager 1 and 2 missions, the people of Earth were treated to images and readings of this mysterious moon. What these revealed was a cold satellite that nevertheless had a dense, nitrogen-rich atmosphere.

Thanks to the Cassini-Huygens mission, which reached Titan in July of 2004 and will be ending its mission on September 15th, the mysteries of this moon have only deepened. Hence why NASA hopes to send more missions there in the near future, like the Dragonfly concept. This craft is the work of the John Hopkins University Applied Physics Laboratory (JHUAPL), which they just submitted an official proposal for.

Essentially, Dragonfly would be a New Frontiers-class mission that would use a dual-quadcopter setup to get around. This would enable vertical-takeoff and landing (VTOL), ensuring that the vehicle would be capable of exploring Titan’s atmosphere and conducting science on the surface. And of course, it would also investigate Titan’s methane lakes to see what kind of chemistry is taking place within them.

Image of Titan’s atmosphere, snapped by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

The goal of all this would be to shed light on Titan’s mysterious environment, which not only has a methane cycle similar to Earth’s own water cycle, but is rich in prebiotic and organic chemistry. In short, Titan is an “ocean world” of our Solar System – along with Jupiter’s moons Europa and Ganymede, and Saturn’s moon of Enceladus – that could contain all the ingredients necessary for life.

What’s more, previous studies have shown that the moon is covered in rich deposits of organic material that are undergoing chemical processes, ones that might be similar to those that took place on Earth billions of years ago. Because of this, scientists have come to view Titan as a sort of planetary laboratory, where the chemical reactions that may have led to life on Earth could be studied.

As Elizabeth Turtle, a planetary scientist at JHUAPL and the principal investigator for the Dragonfly mission, told Universe Today via email:

“Titan offers abundant complex organics on the surface of a water-ice-dominated ocean world, making it an ideal destination to study prebiotic chemistry and to document the habitability of an extraterrestrial environment. Because Titan’s atmosphere obscures the surface at many wavelengths, we have limited information about the materials that make up the surface and how they’re processed.  By making detailed surface composition measurements in multiple locations, Dragonfly would reveal what the surface is made of and how far prebiotic chemistry has progressed in environments that provide known key ingredients for life, identifying the chemical building blocks available and processes at work to produce biologically relevant compounds.”

In addition, Dragonfly would also use remote-sensing observations to characterize the geology of landing sites. In addition to providing context for the samples, it would also allow for seismic studies to determine the structure of the Titan and the presence of subsurface activity. Last, but not least, Dragonfly would use meteorology sensors and remote-sensing instruments to gather information on the planet’s atmospheric and surface conditions.

The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR) is another concept for an aerial explorer for Titan. Credit: Mike Malaska

While multiple proposals have been made for a robotic explorer mission of Titan, most of these have taken the form of either an aerial platforms or a combination balloon and a lander. The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR), a proposal made in the past by Jason Barnes and a team of researchers from the University of Idaho, is an example of the former.

In the latter category, you have concepts like the Titan Saturn System Mission (TSSM), a concept that was being jointly-developed by the European Space Agency (ESA) and NASA. An Outer Planets Flagship Mission concept, the design of the TSSM consisted of three elements – a NASA orbiter, an ESA-designed lander to explore Titan’s lakes, and an ESA-designed Montgolfiere balloon to explore its atmosphere.

What separates Dragonfly from these and other concepts is its ability to conduct aerial and ground-based studies with a single platform. As Dr. Turtle explained:

“Dragonfly would be an in situ mission to perform detailed measurements of Titan’s surface composition and conditions to understand the habitability of this unique organic-rich ocean world.  We proposed a rotorcraft to take advantage of Titan’s dense, calm atmosphere and low gravity (which make flight easier on Titan than it is on Earth) to convey a capable suite of instruments from place to place — 10s to 100s of kilometers apart — to make measurements in different geologic settings.  Unlike other aerial concepts that have been considered for Titan exploration (of which there have been several), Dragonfly would spend most of its time on the surface performing measurements, before flying to another site.”

Dragonfly‘s suite of instruments would include mass spectrometers to study the composition of the surface and atmosphere; gamma-ray spectrometers, which would measure the composition of the subsurface (i.e. looking for evidence of an interior ocean); meteorology and geophysics sensors, which would measure wind, atmospheric pressure, temperature and seismic activity; and a camera suite to snap pictures of the surface.

Artist’s concept of the Titan Aerial Daughter quadcopter and its “Mothership” balloon. Credit: NASA/STMD

Given Titan’s dense atmosphere, solar cells would not be an effective option for a robotic mission. As such, the Dragonfly would rely on a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) for power, similar to what the Curiosity rover uses. While robotic missions that rely on nuclear power sources are not exactly cheap, they do enable missions that can last for years at a time and conduct invaluable research (as Curiosity has shown).

As Peter Bedini – the Program Manager at the JHUAPL Space Department and Dragonfly’s project manager – explained, this would allow for a long-term mission with significant returns:

“We could take a lander, put it on Titan, take these four measurements at one place, and significantly increase our understanding of Titan and similar moons. However, we can multiply the value of the mission if we add aerial mobility, which would enable us to access a variety of geologic settings, maximizing the science return and lowering mission risk by going over or around obstacles.”

In the end, a mission like Dragonfly would be able to investigate how far prebiotic chemistry has progressed on Titan. These types of experiments, where organic building blocks are combined and exposed to energy to see if life emerges, cannot be performed in a laboratory (mainly because of the timescales involved). As such, scientists hope to see how far things have progressed on Titan’s surface, where prebiotic conditions have existed for eons.

Titan's atmosphere makes Saturn's largest moon look like a fuzzy orange ball in this natural-color view from the Cassini spacecraft. Cassini captured this image in 2012. Image Credit: NASA/JPL-Caltech/Space Science Institute
Titan’s thick, nitrogen and hydrocarbon-rich atmosphere lends the planet a cloudy, yellowsh-brown appearance. Credit: NASA/JPL-Caltech/Space Science Institute

In addition, scientists will also be looking for chemical signatures that indicate the presence of water and/or hydrocarbon-based life. In the past, it has been speculated that life could exist within Titan’s interior, and that exotic methanogenic lifeforms could even exist on its surface. Finding evidence of such life would challenge our notions of where life can emerge, and greatly enhance the search for life within the Solar System and beyond.

As Dr. Turtle indicated, mission selection will be coming soon, and whether or not the Dragonfly mission will be sent to Titan should be decided in just a few years time:

“Later this fall, NASA will select a few of the proposed New Frontiers missions for further work in Phase A Concept Studies” she said. “Those studies would run for most of 2018, followed by another round of review.  And the final selection of a flight mission would be in mid-2019… Missions proposed to this round of the New Frontiers Program would be scheduled to launch before the end of 2025.”

And be sure to check out this video of a possible Dragonfly mission, courtesy of the JHUAPL:

Further Reading: JHU Hub

Long After Humanity is Gone and the Sun Dies, the Water Bears Will be There

Like all living creatures, stars have a natural lifespan. After going through their main sequence phase, they eventually exhaust their nuclear fuel and begin the slow process towards death. In our Sun’s case, this will consist of it growing in size and entering the Red Giant phase of its evolution. When that happens, roughly 5.4 billion years from now, the Sun will encompass the orbit’s of Mercury, Venus, and maybe even Earth.

However, even before this happens, astronomers theorize that the Sun will dramatically heat up, which will render Earth uninhabitable to most species. But according to a new study by a team of researchers from Oxford and the University of Harvard, the species known as tardigrades (aka. the “water bear”) will likely survive even after humanity and all other species have perished.

This study, which was recently published in the journal Scientific Reports under the titleThe Resilience of Life to Astrophysical Events“, was conducted by Dr. David Sloan, Dr. Rafael Alves Batista – from the Department of Astrophysics at Oxford University – and Dr. Abraham Loeb of the Harvard-Smithsonian Center for Astrophysics (CfA). As they indicate, previous studies into the effect Solar evolution will have on life have been rather lopsided.

Earth scorched by red giant Sun
Artist’s impression of the Earth scorched by our Sun as it enters its Red Giant Branch phase. Credit: Wikimedia Commons/Fsgregs

Essentially, much attention has been dedicated to whether or not humanity will survive our Sun leaving its main sequence phase. Comparatively, very little research has been conducted on whether or not life itself (and which lifeforms) will be able to survive this change. As such, they considered the most statistically-likely events that would be capable of completely sterilizing an Earth-like planet, and sought to determine what lifeforms could endure them.

As Dr. Loeb told Universe Today via email, their team wanted to consider if there was an extinction-level event that could eliminate all life on Earth (not just humans):

“We wanted to find out how long life may survive on a planet once formed. Most previous studies focused on the survival of humans which are very sensitive to changes in the atmosphere or climate of the Earth and can be eliminated by the impact of an asteroid (nuclear winter) or bad politics.”

What they found was that the species Milnesium tardigradum would survive all potential astrophysical catastrophes. What’s more, they estimated that these creatures will be around for another 10 billion years at least – far longer than what is anticipated for the human race! As Loeb indicates, this was not an outcome that they were expecting.

“To our surprise, tardigrades are likely to survive all astrophysical catastrophes,” he said. “Most likely, the DNA of tardigrades is able to repair itself quickly due to damage encountered by the environment. The process is not fully understood, and there is a group at Harvard University who studies the SNA of tardigrades with the hope of understanding it better.”

Scanning Electron Microscope (SEM) image of Milnesium tardigradum in active state. Credit: Schokraie E/Warnken U/Hotz-Wagenblatt A/Grohme MA/Hengherr S, et al.

To be fair, it has been known for some time that Tardigrades are the most resilient life form on Earth. Not only can they survive for up to 30 years without food or water (half their natural lifespan), they can also survive temperatures of up to 150 °C (302 °F) and as low as -200 °C (-328 °F). They have also shown themselves to be capable of enduring extremes in pressure, ranging from the 6000 atmospheres to the vacuum of open space.

Under these conditions, the research team concluded that they are likely to survive the Sun becoming a red giant and irradiating Earth, and will likely be alive even after the Sun has winked out of existence.  On top of that, tardigrades can even be brought back to life, under the right circumstances. Much like all life on Earth, tradigrades need water to survive, even though they can survive in a dry state for extended periods of time – up to ten years, in fact.

But even after being deprived of water to the point of death, scientists have found that these organisms can be reanimated once water is reintroduced. This was demonstrated in 2007 when a batch of tardigrades was dehydrated before being launched to Low Earth Orbit (LEO). After being exposed to the hard vacuum of space and UV radiation for 10 days, they were returned to Earth and rehydrated – at which point, the majority were revived and able to produce viable embryos.

The team also concluded that other cataclysmic events – such as an asteroid strike, exploding stars (i.e. a supernovae) or gamma ray bursts – pose no existential threat to tardigrades. As Loeb explained:

“We have found that asteroid impacts are capable of boiling off all the oceans on Earth, but only if the asteroid is more massive than 1018 kg [10,000 trillion metric tons]. Such events are extremely rare and will not happen before the Sun will die; the probability of them happening earlier is less than one part in a million.”

Artist’s concept of a collision between proto-Earth and Theia, believed to happened 4.5 billion years ago. Credit: NASA

In fact, the last time an object large enough to boil the oceans (2 x 1018 kg) collided with Earth occurred roughly 4.51 billion years ago. On this occasion, Earth was struck by a Mars-sized object named Theia, which is believed to be what caused the formation of the Moon. Today, there are only a dozen known asteroids or dwarf planets in the Solar System that have this kind of mass, and none of them will intersect the Earth’s orbit in the future.

As for supernova, they indicated that an exploding star would need to be 0.14 light-years from Earth in order for it to boil the oceans from its surface. Since the closest star to our Sun (Proxima Centauri) is 4.25  light years away, this scenario is not a foreseeable risk. As for gamma-ray bursts, which are even rarer than supernova, the team determined that they too are too far away from Earth to pose a threat.

The implications of this study are quite fascinating. For one, it reminds us just how fragile human life is compared to basic, microscopic life forms. It also demonstrates that similarly hardy organisms could exist in a variety of locations that we may have once considered too hostile for life. As Dr Rafael Alves Batista, one of the co-authors on the study, said in a University of Oxford press release:

“Without our technology protecting us, humans are a very sensitive species. Subtle changes in our environment impact us dramatically. There are many more resilient species’ on earth. Life on this planet can continue long after humans are gone. Tardigrades are as close to indestructible as it gets on Earth, but it is possible that there are other resilient species examples elsewhere in the Universe. In this context there is a real case for looking for life on Mars and in other areas of the Solar System in general. If Tardigrades are earth’s most resilient species, who knows what else is out there?’”

The tiny Tardigrade: Nature's toughest creature? (Image Credit: Katexic Publications, unaltered, CC2.0)
The tiny Tardigrade: Nature’s toughest creature? Credit: Katexic Publications, unaltered, CC2.0)

And as Dr. Loeb explained, studies like this have potential benefits that go far beyond assessing our own survivability. Not only do they help us understand life’s ability to endure catastrophic events – which is essential to understanding how and where life could emerge in the Universe – but they also offer possibilities on how we might better our own chances of survival.

“We get a better understanding of the conditions under which life will persist,” he said. “In about a billion years, when the Sun will heat up life will cease, but until then it will continue in some form. Understanding the self-repair mechanism of the DNA on tardigrades could potentially help in combating disease for humans as well.”

And all his time, we thought cockroaches were the toughest critters on the planet, what with their ability to withstand a nuclear holocaust. But these eight-legged creatures, which are arguably cuter than cockroaches too, clearly have the market on toughness cornered. We’re just lucky they only get up to 0.5 mm (0.02 in) in size, otherwise we might have something to worry about!

Further Reading: University of Oxford, Scientific Reports

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer