Most Distant Quasar Opens Window Into Early Universe

[/caption]Astronomers have uncovered yet another clue in their quest to understand the Universe’s early life: the most distant quasar ever observed. At a redshift of 7.1, it is a relic from when the cosmos was just 770 million years old – just 5% of its age today.

Quasars are extremely old, outrageously luminous balls of radiation that were prevalent in the early Universe. Each is thought to have been fueled at its core by an incredibly powerful supermassive black hole. The most recent discovery (which carries the romantic name ULAS J1120+0641) is noteworthy for a couple of reasons. First of all, its supermassive black hole weighs approximately two billion solar masses – an impressive feat of gravity so soon after the Big Bang. It is also incredibly bright, given its great distance. “Objects that lie at such large distance are almost impossible to find in visible-light surveys because their light is stretched by the expansion of the universe,” said Dr. Simon Dye of the University of Nottingham, a member of the team that discovered the object. “This means that by the time their light gets to Earth, most of it ends up in the infrared part of the electromagnetic spectrum.” Due to these effects, only about 100 visible quasars exist in the sky at redshifts higher than 7.

Up until recently, the most distant quasar observed was at a redshift of 6.4; but thanks to this discovery, astronomers can probe 100 million years further into the history of the Universe than ever before. Careful study of ULAS J1120+0641 and its properties will enable scientists to learn more about galaxy formation and supermassive black hole growth in early epochs. The research was published in the June 30 issue of Nature.

For further reading, see related paper by Chris Willot, Monster in the Early Universe

Source: EurekAlert

Vanessa Janek

Vanessa earned her bachelor's degree in Astronomy and Physics in 2009 from Wheaton College in Massachusetts. Her credits in astronomy include observing and analyzing eclipsing binary star systems and taking a walk on the theory side as a NSF intern, investigating the expansion of the Universe by analyzing its traces in observations of type 1a supernovae. In her spare time she enjoys writing about astrophysics, cosmology, environmental science, biology, and medicine, making delicious vegetarian meals, taking adventures with her husband and/or Nikon D50, and saving the world. Vanessa is currently a science writer at Brown University.

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

7 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

11 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

11 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

17 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

21 hours ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

1 day ago