These Three Neutron Stars Shouldn't Be So Cold

Artist's impression of a neutron star, with white/blue filaments are streaming out from its polar regions, representing magnetic field lines. Credit: ESA

Neutron stars are among the densest objects in the Universe, second only to black holes. Like black holes, neutron stars are what remains after a star reaches the end of its life cycle and undergoes gravitational collapse. This produces a massive explosion (a supernova), in which a star sheds its outer layers and leaves behind a super-compressed stellar remnant. In fact, scientists speculate that matter at the center of the star is compressed to the point that even atoms collapse and electrons merge with protons to create neutrons.

Traditionally, scientists have relied on the “Equation of State” – a theoretical model that describes the state of matter under a given set of physical conditions – to understand what physical processes can occur inside a neutron star. But when a team led by scientists from the Spanish National Research Council (CSIC) examined three exceptionally young neutron stars, they noticed they were 10-100 times colder than other neutron stars of the same age. For this, the researchers concluded that these three stars are inconsistent with most of the proposed equations of state.

Continue reading “These Three Neutron Stars Shouldn't Be So Cold”

Which Stars are Lethal to their Planets?

Many years ago, there was a viral YouTube video called “History of the entire world, i guess,” which has been an endless source of internet memes since its release. One of the most prominent is also scientifically accurate—when describing why animals couldn’t start living on land, the video’s creator, Bill Wurtz, intones, “The Sun is a deadly laser.” 

Continue reading “Which Stars are Lethal to their Planets?”

New Simulation Explains how Supermassive Black Holes Grew so Quickly

Supermassive Black Hole Survey. Credit: ESA/XMM-Newton/PSU/F. Zou et al./N.Trehnl/The TNG Collaboration

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope) has been to observe the first galaxies in the Universe – those that existed at Cosmic Dawn. This period is when the first stars, galaxies, and black holes in our Universe formed, roughly 50 million to 1 billion years after the Big Bang. By examining how these galaxies formed and evolved during the earliest cosmological periods, astronomers will have a complete picture of how the Universe has changed with time.

As addressed in previous articles, the results of Webb‘s most distant observations have turned up a few surprises. In addition to revealing that galaxies formed rapidly in the early Universe, astronomers also noticed these galaxies had particularly massive supermassive black holes (SMBH) at their centers. This was particularly confounding since, according to conventional models, these galaxies and black holes didn’t have enough time to form. In a recent study, a team led by Penn State astronomers has developed a model that could explain how SMBHs grew so quickly in the early Universe.

Continue reading “New Simulation Explains how Supermassive Black Holes Grew so Quickly”

Stellar Winds Coming From Other Stars Measured for the First Time

Infrared image of the shockwave created by the massive giant star Zeta Ophiuchi in an interstellar dust cloud. Credit: NASA/JPL-Caltech; NASA and The Hubble Heritage Team (STScI/AURA); C. R. O'Dell, Vanderbilt University

An international research team led by the University of Vienna has made a major breakthrough. In a study recently published in Nature Astronomy, they describe how they conducted the first direct measurements of stellar wind in three Sun-like star systems. Using X-ray emission data obtained by the ESA’s X-ray Multi-Mirror-Newton (XMM-Newton) of these stars’ “astrospheres,” they measured the mass loss rate of these stars via stellar winds. The study of how stars and planets co-evolve could assist in the search for life while also helping astronomers predict the future evolution of our Solar System.

Continue reading “Stellar Winds Coming From Other Stars Measured for the First Time”

Brightest Gamma-ray Burst Shines Light on Milky Way Structure

GRB Burst
XMM Newton's view of the remnant of the record-setting gamma-ray burst 221009A. ESA

The brightest gamma-ray burst ever seen in 2022 still puzzles astronomers.

The more researchers look at a recent record-setting event, the stranger it gets.

The story begins on the evening of October 9th, 2022, when NASA’s Neil Gehrels Swift orbiting observatory detected a strong X-ray outburst. The source was in the direction of the constellation of Sagitta the Arrow along the galactic plane, suggesting a source in our own Milky Way galaxy. Follow-up observations from NASA’s Fermi Gamma-Ray Space Telescope and the Earth-based European Southern Observatory’s Very Large Telescope however, soon revealed that the source was much more distant, emanating from a gamma-ray burst lying beyond our galaxy. This outburst only appeared to have happened along our line of sight as seen through the plane own galaxy from our Earthbound perspective.

Continue reading “Brightest Gamma-ray Burst Shines Light on Milky Way Structure”

A Distant Galaxy Ate All of its Friends. Now It’s All Alone

Composite image of a lonely galaxy containing a supermassive black hole, two jets, and an X-ray hotspot, all surrounded by hot gas. Credit: NASA MSFC/SAO/Chandra

Over 13 billion years ago, the first galaxies in the Universe formed. They were elliptical, with intermediate black holes (IMBHs) at their centers surrounded by a halo of stars, gas, and dust. Over time, these galaxies evolved by flattening out into disks with a large bulge in the middle. They were then drawn together by mutual gravitational attraction to form galaxy clusters, massive collections that comprise the large-scale cosmic structure. This force of attraction also led to mergers, where galaxies and their central black holes came together to create larger spiral galaxies with central supermassive black holes (SMBHs).

This process of mergers and assimilation (and their role in galactic evolution) is still a mystery to astronomers today since much of it took place during the early Universe, which is still very difficult to observe with existing telescopes. Using data from NASA’s Chandra X-ray Observatory and the International Gemini Observatory, an international team of astronomers observed a lone distant galaxy that appears to have consumed all of its former companions. Their findings, which recently appeared in The Astrophysical Journal, suggest galaxies in the early Universe grew faster than previously thought.

Continue reading “A Distant Galaxy Ate All of its Friends. Now It’s All Alone”

Hungry Black Hole was Already Feasting 800 Million Years After the Big Bang

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

Black holes swallow everything—including light—which explains why we can’t see them. But we can observe their immediate surroundings and learn about them. And when they’re on a feeding binge, their surroundings become even more luminous and observable.

This increased luminosity allowed astronomers to find a black hole that was feasting on material only 800 million years after the Universe began.

Continue reading “Hungry Black Hole was Already Feasting 800 Million Years After the Big Bang”

Chandra’s X-ray Vision Combined With JWST Reveals Even More Details About the Universe

A composite image showing x-ray radiation superimposed over an infrared image. Credit: NASA

NASA scientist have released images combining the early data from the James Webb Space Telescope with X-ray data taken with the Chandra Observatory. Besides their beauty, the images offer insights into the inner workings of some of the most complex astrophysical phenomena in the universe.

Continue reading “Chandra’s X-ray Vision Combined With JWST Reveals Even More Details About the Universe”

Astronomers Finally Catch a Nova Detonating on a White Dwarf as it's Happening

Artist impression of an exploding White Dwarf. Credit: University of Tubigen.

On July 7, 2020, the X-ray instrument eROSITA captured an astronomical event that – until then – had only been theorized and never seen. It saw the detonation of a nova on a white dwarf star, which produced a so-called fireball explosion of X-rays.

“It was to some extent a fortunate coincidence, really,” said Ole König from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), who led the team of scientists who have published a new paper on the discovery. “These X-ray flashes last only a few hours and are almost impossible to predict, but the observational instrument must be pointed directly at the explosion at exactly the right time.”

Continue reading “Astronomers Finally Catch a Nova Detonating on a White Dwarf as it's Happening”

NASA Launches a New X-ray Observatory

A SpaceX Falcon 9 rocket launches with NASA’s Imaging X-ray Polarimetry Explorer (IXPE) spacecraft onboard from Launch Complex 39A, Thursday, Dec. 9, 2021, at NASA’s Kennedy Space Center in Florida. The IXPE spacecraft is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as black holes and neutron stars. Launch occurred at 1 a.m. EST. Credits: NASA/Joel Kowsky

A new mission has launched to study some the most intriguing secrets of the universe. No, not THAT spacecraft (JWST is scheduled for launch on December 22). Another new and exciting mission is called Imaging X-ray Polarimetry Explorer (IXPE) and it will allow scientists to explore the hidden details of some of the most extreme and high-energy objects in the cosmos, such as black holes, neutron stars, pulsars and dozens of other objects.

Continue reading “NASA Launches a New X-ray Observatory”