The ALICE detector on CERN's Large Hadron Collider. Credit: A Saba/CERN
For decades, astrophysicists have theorized that the majority of matter in our Universe is made up of a mysterious invisible mass known as “Dark Matter” (DM). While scientists have not yet found any direct evidence of this invisible mass or confirmed what it looks like, there are several possible ways we could search for it soon. One theory is that Dark Matter particles could collide and annihilate each other to produce cosmic rays that proliferate throughout our galaxy – similar to how cosmic ray collisions with the interstellar medium (ISM) do.
This theory could be tested soon, thanks to research conducted using the A Large Ion Collider Experiment (ALICE), one of several detector experiments at CERN’s Large Hadron Collider (LHC). ALICE is optimized to study the results from collisions between nuclei that travel very close to the speed of light (ultra-relativistic velocities). According to new research by the ALICE Collaboration, dedicated instruments could detect anti-helium-3 nuclei (the anti-matter counterpart to He3) as they reach Earth’s atmosphere, thus providing evidence for DM.
Do you have a few minutes to spare and a thirst for knowledge about one of the greater mysteries of the Universe? Then head on over to ArsTechnica and check out the new series they’re releasing titled Edge of Knowledge, starring none other than Dr. Paul Sutter. In what promises to be an enlightening journey, Dr. Sutter will guide viewers through an eight-episode miniseries that explores the mysteries of the cosmos, such as black holes, the future of climate change, the origins of life, and (for their premiere episode) Dark Matter!
As far as astrophysicists and cosmologists are concerned, Dark Matter is one of the most enduring, frustrating, and confusing mysteries ever! Then, one must wonder why scientists are working so tirelessly to track it down? The short answer is: the most widely accepted theories of the Universe don’t make sense without out. The long answer is… it’s both complicated and long! Luckily, Dr. Sutter manages to sum it all up in less than 15 minutes. As an accomplished physicist, he also explains why it is so important that we track Dark Matter down!
Dark matter remains one of the greatest mysteries in science. Despite decades of astronomical evidence for its existence, no one has yet been able to find any sign of it closer to home. There have been dozens of efforts to do so, and one of the most prominent just hit a milestone – the release and analysis of 8 years of data. The IceCube Neutrino Observatory will soon be releasing results from those 8 years, but for now let’s dive in to what exactly they are looking for.
Dark matter rules every galaxy. But what exactly is it? Astronomers believe it to be some kind of new, exotic particle. You may have heard some terms tossed around, like WIMPs or axions. Let’s explore what those terms actually mean.
Crab Nebula (Credit:NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: Davide De Martin (ESA/Hubble))
Most people with any interest in astronomy know about the Crab Nebula. It’s a supernova remnant in the constellation Taurus, and its image is all over the place. Google “Hubble images” and it’s right there with other crowd favorites, like the Pillars of Creation.
The Crab Nebula is one of the most-studied objects in astronomy. It’s the brightest source of gamma rays in the sky, and that fact is being used to establish the function of a new telescope called the Schwarschild-Couder Telescope.
The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA
The field of astronomy has been revolutionized thanks to the first-ever detection of gravitational waves (GWs). Since the initial detection was made in February of 2016 by scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO), multiple events have been detected. These have provided insight into a phenomenon that was predicted over a century ago by Albert Einstein.
As it turns out, the infrastructure that is used to detect GWs could also help crack another astronomical mystery: Dark Matter! According to a new study by a team of Japanese researchers, laser interferometers could be used to look for Weakly-Interacting Massive Particles (WIMPs), a major candidate particle in the hunt for Dark Matter.
The AMS-02 instrument, shown here attached to the outer hull of the ISS. Credit: BASA
Since it was first proposed in the 1960s to account for all the “missing mass” in the Universe, scientists have been trying to find evidence of dark matter. This mysterious, invisible mass theoretically accounts for 26.8% of the baryonic matter (aka. visible matter) out there. And yet, despite almost fifty years of ongoing research and exploration, scientists have not found any direct evidence of this missing mass.
However, according to two new research papers that were recently published in the journal Physical Review Letters, we may have gotten our first glimpse of dark matter thanks to an experiment aboard the International Space Station. Known as the Alpha Magnetic Spectrometer (AMS-02), this a state-of-the-art particle physics detector has been recording cosmic rays since 2011 – which some theorize are produced by the annihilation of dark matter particles.
Like its predecessor (the AMS), the AMS-02 is the result of collaborative work and testing by an international team composed of 56 institutes from 16 countries. With sponsorship from the US Department of Energy (DOE) and overseen by the Johnson Space Center’s AMS Project Office, the AMS-02 was delivered to the ISS aboard the Space Shuttle Endeavour on May 16th, 2011.
Artist’s impression of the AMS-02 instrument. Credit: NASA/JSC
Ostensibly, the AMS-02 is designed to monitor cosmic rays to see how much in the way of antiprotons are falling to Earth. But for the sake of their research, the two science teams also been consulted the data it has been collecting to test theories about dark matter. To break it down, the WIMPs theory of dark matter states that it is made up of Weakly-Interacted Massive Particles (WIMPS), protons and antiprotons are the result of WIMPs colliding.
By monitoring the number of antiprotons that interact with the AMS-02, two science teams (who were working independently of each other) hoped to infer whether or not any of the antiprotons being detected could be caused by WIMP collisions. The difficulty in this, however, is knowing what would constitute an indication, as cosmic rays have many sources and the properties of WIMPs are not entirely defined.
To do this, the two teams developed mathematical models to predict the cosmic ray background, and thus isolate the number of antiprotons that AMS-02 would detect. They further incorporated fine-tuned estimates of the expected mass of the WIMPs, until it fit with the AMS-02 data. One team, led by Alessandro Cuoco, was made up of researchers from the Institute for Theoretical Particle Physics and Cosmology.
Using computer simulations, Cuoco and his colleagues examined the AMS-02 data based on two scenarios – one which accounted for dark matter and one which did not. As they indicate in their study, they not only concluded that the presence of antiprotons created by WIMP collisions better fit the data, but they were also able to constrain the mass of dark matter to about 80 GeV (about 85 times the mass of a single proton or antiproton).
According to supersymmetry, dark-matter particles known as WIMPs annihilate each other, creating a cascade of particles and radiation. Credit: Sky & Telescope / Gregg Dinderman.
As they state in their paper:
“[T]he very accurate recent measurement of the CR antiproton flux by the AMS-02 experiment allows [us] to achieve unprecedented sensitivity to possible DM signals, a factor ~4 stronger than the limits from gamma-ray observations of dwarf galaxies. Further, we find an intriguing indication for a DM signal in the antiproton flux, compatible with the DM interpretation of the Galactic center gamma-ray excess.”
These measurements, which determine the rate at which boron decays into carbon, can be used to guage the distance that boron molecules travel through space. In this case, they were combined with proton measurements to determine background levels for cosmic rays. They incorporated this data into a Bayesian Analysis framework (i.e. a statistical model used to determine probabilities) to see how many antiprotons could be attributed to WIMP collisions.
The results, as they state it in their paper were quite favorable and produced similar mass estimates to the study led by Cuoco’s team. “Compared with the astrophysical background only hypothesis, we find that a dark matter signal is favored,” they write. “The rest mass of the dark matter particles is ?20 – 80 GeV.”
The AMS being delivered to the ISS by the Space Shuttle Endeavour in 2011. Credit: NASA
What’s more, both scientific teams obtained similar estimates when it came to cross-section measurements of dark matter – i.e. the likelihood of collisions happening based on how densely dark matter is distributed. For example, Cuoco’s team obtained a cross-section estimate of 3 x 10-26 per cm³ while Cui’s team obtained an estimate that ranged from 0.2 – 5 × 10-26per cm³.
The fact that two scientific teams, which were operating independently of each other, came to very similar conclusions based on the same data is highly encouraging. While it is not definitive proof of dark matter, it is certainly a step in the right direction. At best, it shows that we are getting closer to creating a detailed picture of what dark matter looks like.
And in the meantime, both teams acknowledge that further work is necessary. Cuoco and his team also suggest what further steps should be taken. “Confirmation of the signal will require a more accurate study of the systematic uncertainties,” they write, “i.e., the antiproton production cross-section, and the modeling of the effect of solar modulation.”
While scientists have attempted to find evidence of dark matter by monitoring cosmic rays in the past, the AMS-02 stands apart because of its extreme sensitivity. As of May 8th, the spectrometer has conducted measurements on 100 billion particles. As of the penning of this article, that number has increased to over 100,523,550,000!
Illustris simulation, showing the distribution of dark matter in 350 million by 300,000 light years. Galaxies are shown as high-density white dots (left) and as normal, baryonic matter (right). Credit: Markus Haider/Illustris
For almost a century, astronomers and cosmologists have postulated that space is filled with an invisible mass known as “dark matter”. Accounting for 27% of the mass and energy in the observable universe, the existence of this matter was intended to explain all the “missing” baryonic matter in cosmological models. Unfortunately, the concept of dark matter has solved one cosmological problem, only to create another.
If this matter does exist, what is it made of? So far, theories have ranged from saying that it is made up of cold, warm or hot matter, with the most widely-accepted theory being the Lambda Cold Dark Matter (Lambda-CDM) model. However, a new study produced by a team of European astronomer suggests that the Warm Dark Matter (WDM) model may be able to explain the latest observations made of the early Universe.
Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH
The standard model of cosmology tells us that only 4.9% of the Universe is composed of ordinary matter (i.e. that which we can see), while the remainder consists of 26.8% dark matter and 68.3% dark energy. As the names would suggest, we cannot see them, so their existence has had to be inferred based on theoretical models, observations of the large-scale structure of the Universe, and its apparent gravitational effects on visible matter.
Since it was first proposed, there have been no shortages of suggestions as to what Dark Matter particles look like. Not long ago, many scientists proposed that Dark Matter consists of Weakly-Interacting Massive Particles (WIMPs), which are about 100 times the mass of a proton but interact like neutrinos. However, all attempts to find WIMPs using colliders experiments have come up empty. As such, scientists have been exploring the idea lately that dark matter may be composed of something else entirely. Continue reading “Beyond WIMPs: Exploring Alternative Theories Of Dark Matter”
New research suggests that Dark Matter may exist in clumps distributed throughout our universe. Credit: Max-Planck Institute for Astrophysics
We know dark matter exists. We know this because without it and dark energy, our Universe would be missing 95.4% of its mass. What’s more, scientists would be hard pressed to explain what accounts for the gravitational effects they routinely see at work in the cosmos.
For decades, scientists have sought to prove its existence by smashing protons together in the Large Hadron Collider. Unfortunately, these efforts have not provided any concrete evidence.
Hence, it might be time to rethink dark matter. And physicists David M. Jacobs, Glenn D. Starkman, and Bryan Lynn of Case Western Reserve University have a theory that does just that, even if it does sound a bit strange.
In their new study, they argue that instead of dark matter consisting of elementary particles that are invisible and do not emit or absorb light and electromagnetic radiation, it takes the form of chunks of matter that vary widely in terms of mass and size.
As it stands, there are many leading candidates for what dark matter could be, which range from Weakly-Interacting Massive Particles (aka WIMPs) to axions. These candidates are attractive, particularly WIMPs, because the existence of such particles might help confirm supersymmetry theory – which in turn could help lead to a working Theory of Everything (ToE).
According to supersymmetry, dark-matter particles known as neutralinos (aka WIMPs) annihilate each other, creating a cascade of particles and radiation. Credit: Sky & Telescope / Gregg Dinderman.
But so far, no evidence has been obtained that definitively proves the existence of either. Beyond being necessary in order for General Relativity to work, this invisible mass seems content to remain invisible to detection.
According to Jacobs, Starkman, and Lynn, this could indicate that dark matter exists within the realm of normal matter. In particular, they consider the possibility that dark matter consists of macroscopic objects – which they dub “Macros” – that can be characterized in units of grams and square centimeters respectively.
Macros are not only significantly larger than WIMPS and axions, but could potentially be assembled out of particles in the Standard Model of particle physics – such as quarks and leptons from the early universe – instead of requiring new physics to explain their existence. WIMPS and axions remain possible candidates for dark matter, but Jacobs and Starkman argue that there’s a reason to search elsewhere.
“The possibility that dark matter could be macroscopic and even emerge from the Standard Model is an old but exciting one,” Starkman told Universe Today, via email. “It is the most economical possibility, and in the face of our failure so far to find dark matter candidates in our dark matter detectors, or to make them in our accelerators, it is one that deserves our renewed attention.”
After eliminating most ordinary matter – including failed Jupiters, white dwarfs, neutron stars, stellar black holes, the black holes in centers of galaxies, and neutrinos with a lot of mass – as possible candidates, physicists turned their focus on the exotics.
Ongoing experiments at the Large Hadron Collider have so far failed to produce evidence of WIMPs. Credit: CERN/LHC/GridPP
Nevertheless, matter that was somewhere in between ordinary and exotic – relatives of neutron stars or large nuclei – was left on the table, Starkman said. “We say relatives because they probably have a considerable admixture of strange quarks, which are made in accelerators and ordinarily have extremely short lives,” he said.
Although strange quarks are highly unstable, Starkman points out that neutrons are also highly unstable. But in helium, bound with stable protons, neutrons remain stable.
“That opens the possibility that stable strange nuclear matter was made in the early Universe and dark matter is nothing more than chunks of strange nuclear matter or other bound states of quarks, or of baryons, which are themselves made of quarks,” said Starkman.
Such dark matter would fit the Standard Model.
This is perhaps the most appealing aspect of the Macros theory: the notion that dark matter, which our cosmological model of the Universe depends upon, can be proven without the need for additional particles.
Still, the idea that the universe is filled with a chunky, invisible mass rather than countless invisible particles does make the universe seem a bit stranger, doesn’t it?