Did Powerful Asteroid Impacts Make Venus So Different From Earth?

Artist's impression of a bolide impact on a young Venus. Credit: SwRI

Venus and Earth have several things in common. Both are terrestrial planets composed of silicate minerals and metals that are differentiated between a rocky mantle and crust and a metal core. Like Earth, Venus orbits within our Sun’s circumsolar habitable zone (HZ), though Venus skirts the inner edge of it. And according to a growing body of evidence, Venus has active volcanoes on its surface that contribute to atmospheric phenomena (like lightning). However, that’s where the similarities end, and some rather stark differences set in.

In addition to Venus’ hellish atmosphere, which is about 100 times as dense as Earth’s and hot enough to melt lead, Venus has a very “youthful” surface. Compared to other bodies in the Solar System (like Mercury, the Moon, and Mars), Venus’ surface retains little evidence of the many bolides impacts it experienced over billions of years. According to new research from the Southwest Research Institute (SwRI) and Yale University, this may result from bolide impacts that provided a high-energy, rejuvenating boost to the planet in its early years.

Continue reading “Did Powerful Asteroid Impacts Make Venus So Different From Earth?”

Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive

Image from NASA's Mariner 10 spacecraft in February 1974 as it traveled away from Venus. (Credit: NASA/JPL-Caltech)

The surface of Venus is like a scene from Dante’s Inferno – “Abandon all hope, ye who enter here!” and so forth. The temperature is hot enough to melt lead, the air pressure is almost one hundred times that of Earth’s at sea level, and there are clouds of sulfuric acid rain to boot! But roughly 48 to 60 km (30 to 37.3 mi) above the surface, the temperatures are much cooler, and the air pressure is roughly equal to Earth’s at sea level. As such, scientists have speculated that life could exist above the cloud deck (possibly in the form of microbes) as it does on Earth.

Unfortunately, these clouds are not composed of water but of concentrated sulfuric acid, making the likelihood that life could survive among them doubtful. However, a new study led by scientists from the Massachusetts Institute of Technology (MIT) reveals that the basic building blocks of life (nucleic acid bases) are stable in concentrated sulfuric acid. These findings indicate that Venus’ atmosphere could support the complex chemistry needed for life to survive, which could have profound implications in the search for habitable planets and extraterrestrial life.

Continue reading “Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive”

The Clouds of Venus Could Support Life

Image of Venus taken by NASA’s Pioneer-Venus Orbiter in 1979. (Credit: NASA)

A recent study published in Astrobiology examines the likelihood of the planet Venus being able to support life within the thick cloud layer that envelopes it. This study holds the potential to help us better understand how life could exist under the intense Venusian conditions, as discussions within the scientific community about whether life exists on the second planet from the Sun continue to burn hotter than Venus itself.

Continue reading “The Clouds of Venus Could Support Life”

Did Life Need Plate Tectonics to Emerge?

New research indicates that mobile plate tectonics—thought to be necessary for the creation of a habitable planet—was not occurring on Earth 3.9 billion years ago. Image Credit: University of Rochester illustration / Michael Osadciw

It’s widely accepted that Earth’s plate tectonics are a key factor in life’s emergence. Plate tectonics allows heat to move from the mantle to the crust and plays a critical role in cycling nutrients. They’re also a key part of the carbon cycle that moderates Earth’s temperature.

But new research suggests that there was no plate tectonic activity when life appeared sometime around 3.9 billion years ago. Does this have implications for our search for habitable worlds?

Continue reading “Did Life Need Plate Tectonics to Emerge?”

If You’re Going to Visit Venus, Why Not Include an Asteroid Flyby Too?

Radar image of Venus created by the Solar System Visualization project and the Magellan science team at the JPL Multimission Image Processing Laboratory. This is a single frame from a video released at the October 29, 1991, JPL news conference. (Credit: NASA/JPL)

A recent study submitted to Acta Astronautica examines the prospect of designing a Venus mission flight plan that would involve visiting a nearby asteroid after performing a gravity assist maneuver at Venus but prior to final contact with the planet. The study was conducted by Vladislav Zubko, who is a researcher and PhD Candidate at the Space Research Institute of the Russian Academy of Science (RAS) and has experience studying potential flight plans to various planetary bodies throughout the solar system.

Continue reading “If You’re Going to Visit Venus, Why Not Include an Asteroid Flyby Too?”

We Now Have a Map of all 85,000 Volcanoes on Venus

The most comprehensive map of all volcanic edifices on Venus ever compiled. Map created by Rebecca Hahn, Washington University in St. Louis.

A new map created with decades-old radar imagery from NASA’s 1990’s Magellan mission shows the locations of a whopping 85,000 volcanoes on Venus. The detailed map displays where the volcanoes are, how they’re clustered, and how their distributions compare with other geophysical properties of the planet such as crustal thickness.

This comprehensive study of Venus will help planetary scientists answer many outstanding questions about the planet’s geological history, such as why doesn’t it have plate tectonics like Earth? Was it ever habitable, and if so, for how long?

Continue reading “We Now Have a Map of all 85,000 Volcanoes on Venus”

The Best Way to Learn About Venus Could Be With a Fleet of Balloons

Interest in the exploration of Venus has kicked up a notch lately, especially after a contested recent discovery of phosphine, a potential biosignature, in the planet’s atmosphere. Plenty of missions to Venus have been proposed, and NASA and ESA have recently funded several. However, they are mainly orbiters, trying to peer into the planet’s interior from above. But they are challenged by having to see through dozens of kilometers of an atmosphere made up of sulfuric acid. 

That same atmosphere is challenging for ground missions. While some of the recently funded missions include a component on the ground, they are missing an opportunity that isn’t afforded on many other planets in the solar system – riding along in the atmosphere. Technologists have proposed everything from simple balloons to entire floating cities – we even heard of a plan to enclose the entirety of Venus in a shell and live on the surface of that shell. But for now, balloons seem to be a more straightforward answer. That is the mission modality proposed by a team of researchers at NASA’s Jet Propulsion Laboratory to discover more about something that was only confirmed to exist on Venus in the last week – volcanism.

Continue reading “The Best Way to Learn About Venus Could Be With a Fleet of Balloons”

Potentially Active Volcanoes Have Been Found on Venus

The volcano Maat Mons on Venus is shown in this computer generated three-dimensional perspective of the planet's surface, based on data from the Magellan mission. Credit: NASA/JPL/Caltech.

Using archival radar images taken in the 1990s by NASA’s Magellan spacecraft, scientists have found evidence of recent active volcanism on Venus.  The images revealed a volcanic vent that changed shape and increased significantly in size over an eight-month period.

The scientists say their findings confirm long-held suspicions that the planet, which is known to have a very geologically young surface and evidence of past volcanic eruptions, is still active today.

“We made the discovery in the most likely place that there should have been new volcanism,” said Robert Herrick, a geophysicist at the University of Alaska Fairbanks, speaking at a briefing on March 15, 2023 from the Lunar and Planetary Science Conference in Texas. “Extrapolating from a data set of one for an entire planet could be dangerous, but most scientists would say it’s pretty good evidence that being able to catch an eruption in an eight-month time frame means that others are taking place as well. It confirms there is modern geological activity on Venus.”

Continue reading “Potentially Active Volcanoes Have Been Found on Venus”

Venus is Like an Exoplanet that’s Right Next Door

Venus' thick clouds mean that only radar imaging can reveal surface details. Image Credit: NASA/JPL-Caltech

We’re lucky to have a neighbour like Venus, even though it’s totally inhospitable, wildly different from the other rocky planets, and difficult to study. Its thick atmosphere obscures its surface, and only powerful radar can penetrate it. Its extreme atmospheric pressure and high temperatures are barriers to landers or rovers.

It’s like having a mysterious exoplanet next door.

Continue reading “Venus is Like an Exoplanet that’s Right Next Door”

Venus’ Outer Shell is Thinner and “Squishier” Than Previously Believed

Artist's illustration of Quetzalpetlatl Corona on Venus displaying both active volcanism and a subduction zone. (Credit: NASA/JPL-Caltech/Peter Rubin)

While Earth and Venus are approximately the same size and both lose heat at about the same rate, the internal mechanisms that drive Earth’s geologic processes differ from its neighbor. It is these Venusian geologic processes that a team of researchers led by NASA’s Jet Propulsion Laboratory (JPL) and the California Institute of Technology hope to learn more about as they discuss both the cooling mechanisms of Venus and the potential processes behind it.

Continue reading “Venus’ Outer Shell is Thinner and “Squishier” Than Previously Believed”