There’s Enough Sunlight Getting Through Venus’ Clouds to Support High-Altitude Life

Carl Sagan once famously, and sarcastically, observed that, since we couldn’t see what was going on on the surface of Venus, there must be dinosaurs living there.  Once humans started landing probes on the planet’s surface, any illusion of a lush tropical world was quickly dispelled.  Venus was a hellscape of extraordinary temperatures and pressures that would make it utterly inhospitable to anything resembling Earth life.  

But more recently, astrobiologists have again turned their attention to the Morning Star.  But this time, instead of looking at the surface, they looked in the clouds.  And now, a new study from researchers at California Polytechnic, Pomona, has calculated that there is likely a layer in the atmosphere where photosynthesis can occur. Meaning there is a zone in Venus’ cloud layer where life could have evolved.

Continue reading “There’s Enough Sunlight Getting Through Venus’ Clouds to Support High-Altitude Life”

The Early Solar System was Messier and More Violent Than Previously Believed

Our conventional models of planet formation may have to be updated, according to a pair of new papers.

Accretion is the keyword in current planet formation theory. The idea is that the planets formed out of the solar nebula, the material left over after the Sun formed. They did this through accretion, where small particles accumulate into more massive objects. These massive boulder-sized objects, called planetesimals, continued to merge together into larger entities, sometimes through collisions. Eventually, through repeated mergers and collisions, the inner Solar System was populated by four rocky planets.

But the new research suggests that the collisions played out much differently than thought and that objects collided with each other several times, in a series of hit and runs, before merging. This research fills some stubborn holes in our current understanding.

Continue reading “The Early Solar System was Messier and More Violent Than Previously Believed”

Two Spacecraft are Flying Past Venus, Just 33 Hours Apart

When Longfellow wrote about “ships passing in the night” back in 1863, he probably wasn’t thinking about satellites passing near Venus.  He probably also wouldn’t have considered 575,000 km separation as “passing”, but on the scale of interplanetary exploration, it might as well be.  And passing is exactly what two satellites will be doing near Venus in the next few days – performing two flybys of the planet within 33 hours of each other.

Continue reading “Two Spacecraft are Flying Past Venus, Just 33 Hours Apart”

Observing the Night Side of Venus is Actually Pretty Tricky

Observing the dark side of planets is hard. In the visible spectrum, they are almost unobservable, while in the infrared some heat signatures may come through, but not enough to help see what is going on in a planet’s atmosphere.  Now a team from the University of Tokyo think they’ve developed a way to monitor weather patterns on the night side of one of the most difficult planets of all – Venus.

Continue reading “Observing the Night Side of Venus is Actually Pretty Tricky”

Volcanic Activity on Venus Could Explain Phosphine

Ever since the announcement last September that astronomers found evidence of phosphine in the clouds of Venus, the planet has been getting a lot of attention. It’s not surprising. Phosphine is a potential biosignature: On Earth, it is produced by microbial life. Might a similar biological process be taking place in the skies of our sister planet? It’s a tantalizing prospect, and is definitely worth examining closely, but it’s too early to be sure. Microbes aren’t the only way to get phosphine. A new paper published on July 12th in the Proceedings of the National Academy of Science suggests that volcanism might instead be to blame for the strange chemistry in the Venusian cloud tops.

Continue reading “Volcanic Activity on Venus Could Explain Phosphine”

Venus’ Surface Tectonics is More Like Pack ice on Earth

Planets move in mysterious ways.  Or at least their surfaces do.  Earth famously has a system of tectonic plates that drives the movement of its crust.  Those plate tectonics are ultimately driven by the flow of material in the mantle – the layer directly below the crust.  Now, scientists have found a slightly different deformation mechanic on our nearest sister planet – Venus.

Continue reading “Venus’ Surface Tectonics is More Like Pack ice on Earth”

Bad News, Life Probably can’t Exist on Venus. Good News, it Could be in Jupiter’s Clouds

For decades, scientists engaged in the search for life in the Universe (aka. astrobiology) have focused on searching for life on other Earth-like planets. These included terrestrial (aka. rocky) planets beyond our Solar System (extrasolar planets) and ones here at home. Beyond Earth, Mars is considered to be the most habitable planet next to Earth, and scientists have also theorized that life could exist (in microbial form) in the cloud tops of Venus.

In all cases, a major focal point is whether or not planets have large bodies of water on their surfaces (or did in the past). However, a new study led by a research team from the UK and German (with support from NASA) has shown that the existence of life may have less to do with the quantity of water and more to with the presence of atmospheric water molecules. As a result, we may have better luck finding life on Jupiter’s turbulent cloud deck than Venus’.

Continue reading “Bad News, Life Probably can’t Exist on Venus. Good News, it Could be in Jupiter’s Clouds”

NASA Orders Up a Double Shot of Venus Missions Amid Questions About Life

Venus

NASA’s planetary science program is making a big bet on Venus, after decades of putting its chips on Mars in the search for hints of past or present life out there in the solar system.

The bet comes in the form of a double dose of development funding for Discovery Program missions, amounting to as much as $1 billion. Both DAVINCI+ and VERITAS were selected from a field of four finalists in a competitive process — leaving behind missions aimed at studying Jupiter’s moon Io and Neptune’s moon Triton.

“These two sister missions are both aimed to understand how Venus became an inferno-like world capable of melting lead at the surface,” NASA Administrator Bill Nelson said June 2 in his first “State of NASA” address. “They will offer the entire science community the chance to investigate a planet we haven’t been to in more than 30 years.”

Lessons from Venus, which underwent a runaway greenhouse effect early in its existence, could improve scientists’ understanding of our own planet’s changing climate. The missions could also address one of the biggest questions about the second rock from the Sun: whether life could exist in the upper reaches of its cloud layer.

Continue reading “NASA Orders Up a Double Shot of Venus Missions Amid Questions About Life”