Proxima Centauri Just Released a Flare so Powerful it was Visible to the Unaided Eye. Planets There Would Get Scorched

Since its discovery was announced in August of 2016, Proxima b has been an endless source of wonder and the target of many scientific studies. In addition to being the closest extra-solar planet to our Solar System, this terrestrial planet also orbits within Proxima Centauri’s circumstellar habitable zone (aka. “Goldilocks Zone”). As a result, scientists have naturally sought to determine if this planet could actually be home to extra-terrestial life.

Many of these studies have been focused on whether or not Proxima b could retain an atmosphere and liquid water on its surface in light of the fact that it orbits an M-type (red dwarf) star. Unfortunately, many of these studies have revealed that this is not likely due to flare activity. According to a new study by an international team of scientists, Proxima Centauri released a superflare that was so powerful, it would have been lethal to any life as we know it.

The study, titled “The First Naked-Eye Superflare Detected from Proxima Centauri“, recently appeared online. The team was led by Howard Ward, a PhD candidate in physics and astronomy at the UNC Chapel Hill, with additional members from the NASA Goddard Space Flight Center, the University of Washington, the University of Colorado, the University of Barcelona and the School of Earth and Space Exploration at Arizona State University.

Artist impression of a red dwarf star like Proxima Centauri, the nearest star to our sun. New analysis of ALMA observations reveal that Proxima Centauri emitted a powerful flare that would have created inhospitable conditions for planets in that system. Credit: NRAO/AUI/NSF; D. Berry

As they indicate in their study, solar flare activity would be one of the greatest potential threats to planetary habitability in a system like Proxima Centauri. As they explain:

“[W]hile ozone in an Earth-like planet’s atmosphere can shield the planet from the intense UV flux associated with a single superflare, the atmospheric ozone recovery time after a superflare is on the order of years. A sufficiently high flare rate can therefore permanently prevent the formation of a protective ozone layer, leading to UV radiation levels on the surface which are beyond what some of the hardiest-known organisms can survive.”

In addition stellar flares, quiescent X-ray emissions and UV flux from a red dwarf star can would be capable of stripping planetary atmospheres over the course of several billion years. And while multiple studies have been conducted that have explored low- and moderate-energy flare events on Proxima, only one high-energy event has even been observed.

This occurred on March of 2016, when Proxima Centauri emitted a superflare that was so bright, it was visible to the naked eye. This flare was observed by the Evryscope, an array of telescopes – funded through the National Science Foundation‘s Advanced Technologies and Instrumentation (ATI) and Faculty Early Career Development (CAREER) programs – that is pointed at every part of the accessible sky simultaneously and continuously.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

As the team indicates in their study, the March 2016 superflare was the first to be observered from Proxima Centauri, and was rather powerful:

“In March 2016 the Evryscope detected the first-known Proxima superflare. The superflare had a bolometric energy of 10^33.5 erg, ~10× larger than any previously-detected flare from Proxima, and 30×larger than any optically measured Proxima flare. The event briefly increased Proxima’s visible-light emission by a factor of 38× averaged over the Evryscope’s 2-minute cadence, or ~68× at the cadence of the human eye. Although no M-dwarfs are usually visible to the naked-eye, Proxima briefly became a magnitude-6.8 star during this superflare, visible to dark-site naked-eye observers.”

The superflare coincided with the three-month Pale Red Dot campaign, which was responsible for first revealing the existence of Proxima b. While monitoring the star with the HARPS spectrograph – which is part of the 3.6 m telescope at the ESO’s La Silla Observatory in Chile – the campaign team also obtaining spectra on March 18th, 08:59 UT (just 27 minutes after the flare peaked at 08:32 UT).

The team also noted that over the last two years, the Evryscope has recorded 23 other large Proxima flares, ranging in energy from 10^30.6 erg to 10^32.4 erg. Coupled with rates of a single superflare detection, they predict that at least five superflares occur each year. They then combined this data with the high-resolution HARPS spectroscopy to constrain the superflare’s UV spectrum and any associated coronal mass ejections.

The Red Dots project is successor to the Pale Red Dot project, which discovered Proxima b last summer. Credit: ESO

The team then used the HARPS spectra and the Evryscope flare rates to create a model to determine what effects this star would have on a nitrogen-oxygen atmosphere. This included how long the planet’s protective ozone layer would be able to withstand the blasts, and what effect regular exposure to radiation would have on terrestrial organisms.

“[T]he repeated flaring is sufficient to reduce the ozone of an Earth-like atmosphere by 90% within five years. We estimate complete depletion occurs within several hundred kyr. The UV light produced by the Evryscope superflare therefore reached the surface with ~100× the intensity required to kill simple UV-hardy microorganisms, suggesting that life would struggle to survive in the areas of Proxima b exposed to these flares.”

Essentially, this and other studies have concluded that any planets orbiting Proxima Centauri would not be habitable for very long, and likely became lifeless balls of rock a long time ago. But beyond our closest neighboring star system, this study also has implications for other M-type star systems. As they explain, red dwarf stars are the most common in our galaxy – roughly 75% of the population – and two-thirds of these stars experience active flare activity.

As such, measuring the impact that superflares have on these worlds will be a necessary component to determining whether or not exoplanets found by future missions are habitable. Looking ahead, the team hopes to use the Evryscope to examine other star systems, particularly those that are targets for the upcoming Transiting Exoplanet Survey Satellite (TESS) mission.

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

“Beyond Proxima, Evryscope has already performed similar long-term high-cadence monitoring of every other Southern TESS planet-search target, and will therefore be able to measure the habitability impact of stellar activity for all Southern planetsearch-target M-dwarfs,” they write. “In conjunction with coronal-mass-ejection searches from long- wavelength radio arrays like the [Long Wavelength Array], the Evryscope will constrain the long-term atmospheric effects of this extreme stellar activity.”

For those who hoped that humanity might find evidence of extra-terrestrial life in their lifetimes, this latest study is certainly a letdown. It’s also disappointing considering that in addition to being the most common type of star in the Universe, some research indicates that red dwarf stars may be the most likely place to find terrestrial planets. However, even if two-thirds of these stars are active, that still leaves us with billions of possibilities.

It is also important to note that these studies help ensure that we can determine which exoplanets are potentially habitable with greater accuracy. In the end, that will be the most important factor when it comes time to decide which of these systems we might try to explore directly. And if this news has got you down, just remember the worlds of the immortal Carl Sagan:

“The universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

Further Reading: arXiv

Watch the Sun to Know When We’re Going to Have Killer Auroras

To the naked eye, the Sun puts out energy in a continual, steady state, unchanged through human history. (Don’t look at the sun with your naked eye!) But telescopes tuned to different parts of the electromagnetic spectrum reveal the Sun’s true nature: A shifting, dynamic ball of plasma with a turbulent life. And that dynamic, magnetic turbulence creates space weather.

Space weather is mostly invisible to us, but the part we can see is one of nature’s most stunning displays, the auroras. The aurora’s are triggered when energetic material from the Sun slams into the Earth’s magnetic field. The result is the shimmering, shifting bands of color seen at northern and southern latitudes, also known as the northern and southern lights.

This image of the northern lights over Canada was taken by a crew member on board the ISS in Sept. 2017. Image: NASA

There are two things that can cause auroras, but both start with the Sun. The first involves solar flares. Highly-active regions on the Sun’s surface produce more solar flares, which are sudden, localized increase in the Sun’s brightness. Often, but not always, a solar flare is coupled with a coronal mass ejection (CME).

A coronal mass ejection is a discharge of matter and electromagnetic radiation into space. This magnetized plasma is mostly protons and electrons. The CME ejection often just disperses into space, but not always. If it’s aimed in the direction of the Earth, chances are we get increased auroral activity.

The second cause of auroras are coronal holes on the Sun’s surface. A coronal hole is a region on the surface of the Sun that is cooler and less dense than surrounding areas. Coronal holes are the source of fast-moving streams of material from the Sun.

Whether it’s from an active region on the Sun full of solar flares, or whether it’s from a coronal hole, the result is the same. When the discharge from the Sun strikes the charged particles in our own magnetosphere with enough force, both can be forced into our upper atmosphere. As they reach the atmosphere, they give up their energy. This causes constituents in our atmosphere to emit light. Anyone who has witnessed an aurora knows just how striking that light can be. The shifting and shimmering patterns of light are mesmerizing.

The auroras occur in a region called the auroral oval, which is biased towards the night side of the Earth. This oval is expanded by stronger solar emissions. So when we watch the surface of the Sun for increased activity, we can often predict brighter auroras which will be more visible in southern latitudes, due to the expansion of the auroral oval.

This photo is of the aurora australis over New Zealand. Image: Paul Stewart, Public Domain, CC 1.0 Universal.

Something happening on the surface of the Sun in the last couple days could signal increased auroras on Earth, tonight and tomorrow (March 28th, 29th). A feature called a trans-equatorial coronal hole is facing Earth, which could mean that a strong solar wind is about to hit us. If it does, look north or south at night, depending on where your live, to see the auroras.

Of course, auroras are only one aspect of space weather. They’re like rainbows, because they’re very pretty, and they’re harmless. But space weather can be much more powerful, and can produce much greater effects than mere auroras. That’s why there’s a growing effort to be able to predict space weather by watching the Sun.

A powerful enough solar storm can produce a CME strong enough to damage things like power systems, navigation systems, communications systems, and satellites. The Carrington Event in 1859 was one such event. It produced one of the largest solar storms on record.

That storm occurred on September 1st and 2nd, 1859. It was preceded by an increase in sun spots, and the flare that accompanied the CME was observed by astronomers. The auroras caused by this storm were seen as far south as the Caribbean.

Sunspots are dark areas on the surface of the Sun that are cooler than the surrounding areas. They form where magnetic fields are particularly strong. The highly active magnetic fields near sunspots often cause solar flares. Image: NASA/SDO/AIA/HMI/Goddard Space Flight Center

The same storm today, in our modern technological world, would wreak havoc. In 2012, we almost found out exactly how damaging a storm of that magnitude could be. A pair of CMEs as powerful as the Carrington Event came barreling towards Earth, but narrowly missed us.

We’ve learned a lot about the Sun and solar storms since 1859. We now know that the Sun’s activity is cyclical. Every 11 years, the Sun goes through its cycle, from solar maximum to solar minimum. The maximum and minimum correspond to periods of maximum sunspot activity and minimum sunspot activity. The 11 year cycle goes from minimum to minimum. When the Sun’s activity is at its minimum in the cycle, most CMEs come from coronal holes.

NASA’s Solar Dynamics Observatory (SDO), and the combined ESA/NASA Solar and Heliospheric Observatory (SOHO) are space observatories tasked with studying the Sun. The SDO focuses on the Sun and its magnetic field, and how changes influence life on Earth and our technological systems. SOHO studies the structure and behavior of the solar interior, and also how the solar wind is produced.

Several different websites allow anyone to check in on the behavior of the Sun, and to see what space weather might be coming our way. The NOAA’s Space Weather Prediction Center has an array of data and visualizations to help understand what’s going on with the Sun. Scroll down to the Aurora forecast to watch a visualization of expected auroral activity.

NASA’s Space Weather site contains all kinds of news about NASA missions and discoveries around space weather. is a volunteer run site that provides real-time info on space weather. You can even sign up to receive alerts for upcoming auroras and other solar activity.

New Study Proposes a Giant, Space-Based Solar Flare Shield for Earth

In today’s modern, fast-paced world, human activity is very much reliant on electrical infrastructure. If the power grids go down, our climate control systems will shut off, our computers will die, and all electronic forms of commerce and communication will cease. But in addition to that, human activity in the 21st century is also becoming increasingly dependent upon the infrastructure located in Low Earth Orbit (LEO).

Aside from the many telecommunications satellites that are currently in space, there’s also the International Space Station and a fleet of GPS satellites. It is for this reason that solar flare activity is considered a serious hazard, and mitigation of it a priority. Looking to address that, a team of scientists from Harvard University recently released a study that proposes a bold solution – placing a giant magnetic shield in orbit.

The study – which was the work of Doctor Manasavi Lingam and Professor Abraham Loeb from the Harvard Smithsonian Center for Astrophysicist (CfA) – recently appeared online under the title “Impact and Mitigation Strategy for Future Solar Flares“. As they explain, solar flares pose a particularly grave risk in today’s world, and will become an even greater threat due to humanity’s growing presence in LEO.

Solar flares have been a going concern for over 150 years, ever since the famous Carrington Event of 1859. Since that time, a great deal of effort has been dedicated to the study of solar flares from both a theoretical and observational standpoint. And thanks to the advances that have been made in the past 200 years in terms of astronomy and space exploration, much has been learned about the phenomena known as “space weather”.

At the same time, humanity’s increased reliance on electricity and space-based infrastructure have also made us more vulnerable to extreme space weather events. In fact, if the Carrington event were to take place today, it is estimated that it would cause global damage to electric power grids, satellites communications, and global supply chains.

The cumulative worldwide economic losses, according to a 2009 report by the Space Studies Board (“Severe Space Weather Events–Understanding Societal and Economic Impacts”), would be $10 trillion, and recovery would take several years. And yet, as Professor Loeb explained to Universe Today via email, this threat from space has received far less attention than other possible threats.

“In terms of risk from the sky, most of the attention in the past was dedicated to asteroids,” said Loeb. “They killed the dinosaurs and their physical impact in the past was the same as it will be in the future, unless their orbits are deflected. However, solar flares have little biological impact and their main impact is on technology. But a century ago, there was not much technological infrastructure around, and technology is growing exponentially. Therefore, the damage is highly asymmetric between the past and future.”

Artist’s concept of a large asteroid passing by the Earth-Moon system. Credit: A combination of ESO/NASA images courtesy of Jason Major/Lights in the Dark.

To address this, Lingham and Loeb developed a simple mathematical model to assess the economic losses caused by solar flare activity over time. This model considered the increasing risk of damage to technological infrastructure based on two factors. For one, they considered the fact that the energy of a solar flares increases with time, then coupled this with the exponential growth of technology and GDP.

What they determined was that on longer time scales, the rare types of solar flares that are very powerful become much more likely. Coupled with humanity’s growing presence and dependence on spacecraft and satellites in LEO, this will add up to a dangerous conjunction somewhere down the road. Or as Loeb explained:

“We predict that within ~150 years, there will be an event that causes damage comparable to the current US GDP of ~20 trillion dollars, and the damage will increase exponentially at later times until technological development will saturate. Such a forecast was never attempted before. We also suggest a novel idea for how to reduce the damage from energetic particles by a magnetic shield. This was my idea and was not proposed before.”

To address this growing risk, Lingham and Loeb also considered the possibility of placing a magnetic shield between Earth and the Sun. This shield would be placed at the Earth-Sun Lagrange Point 1, where it would be able to deflect charged particles and create an artificial bowshock around Earth. In this sense, this shield would protect Earth’s in a way that is similar to what its magnetic field already does, but to greater effect.

Illustration of the proposed magnetic deflector placed at the Earth-Sun L1 Lagrange Point. Credit: Lingam and Loeb, 2017

Based on their assessment, Lingham and Loeb indicate that such a shield is technically feasible in terms of its basic physical parameters. They were also able to provide a rudimentary timeline for the construction of this shield, not to mention some rough cost assessments. As Loeb indicated, such a shield could be built before this century is over, and at a fraction of the cost of what would be incurred from solar flare damage.

“The engineering project associated with the magnetic shield that we propose could take a few decades to construct in space,” he said. “The cost for lifting the needed infrastructure to space (weighting 100,000 tons) will likely be of order 100 billions of dollars, much less than the expected damage over a century.”

Interestingly enough, the idea of using a magnetic shield to protect planets has been proposed before. For example, this type of shield was also the subject of a presentation at this year’s “Planetary Science Vision 2050 Workshop“, which was hosted by NASA’s Planetary Science Division (PSD). This shield was recommended as a means of enhancing Mars’ atmosphere and facilitating crewed mission to its surface in the future.

During the course of the presentation, titled “A Future Mars Environment for Science and Exploration“, NASA Director Jim Green discussed how a magnetic shield could protect Mars’ tenuous atmosphere from solar wind. This would allow it to replenish over time, which would have the added benefit of warming Mars up and allowing liquid water to again flow on its surface. If this sounds similar to proposals for terraforming Mars, that’s because it is!

Artist’s impression of a flaring red dwarf star, orbited by an exoplanet. Credit: NASA, ESA, and G. Bacon (STScI)

Beyond Earth and the Solar System, the implications for this study are quite overwhelming. In recent years, many terrestrial planets have been found orbiting within nearby M-type (aka. red dwarf) star systems. Because of the way these planets orbit closely to their respective suns, and the variable and unstable nature of M-type stars, scientists have expressed doubts about whether or not these planets could actually be habitable.

In short, scientists have ventured that over the course of billions of years, rocky planets that orbit close to their suns, are tidally-locked with them, and are subject to regular solar flares would lose their atmospheres. In this respect, magnetic shields could be a possible solution to creating extra-solar colonies. Place a large shield in orbit at the L1 Lagrange point, and you never have to worry again about powerful magnetic storms ravaging the planet!

On top of that, this study offers a possible resolution to the Fermi Paradox. When looking for sign of Extra-Terrestrial Intelligence (ETI), it might make sense to monitor distant stars for signs of an orbiting magnetic shield. As Prof. Leob explained, such structures may have already been detected around distant stars, and could explain some of the unusual observations astronomers have made:

“The imprint of a shield built by another civilization could involve the changes it induces in the brightness of the host star due to occultation (similar behavior to Tabby’s star)  if the structure is big enough. The situation could be similar to Dyson’s spheres, but instead of harvesting the energy of the star the purpose of the infrastructure is to protect a technological civilization on a planet from the flares of its host star.”
It is a foregone conclusion that as time and technology progress, humanity’s presence in (and reliance on) space will increase. As such, preparing for the most drastic space weather events the Solar System can throw at us just makes sense. And when it comes to the big questions like “are we alone in the Universe?”, it also makes sense to take our boldest concepts and proposals and consider how they might point the way towards extra-terrestrial intelligence.

Further Reading: arXiv

TRAPPIST-1 Is Showing A Bit Too Much Flare

It turns out that the TRAPPIST-1 star may be a terrible host for the TRAPPIST planets announced in February.

The TRAPPIST-1 star, a Red Dwarf, and its 7 planets caused a big stir in February when it was discovered that 3 of the rocky planets are in the habitable zone. But now more data is coming which suggests that the TRAPPIST-1 star is much too volatile for life to exist on its planets.

Red Dwarfs are much dimmer than our Sun, but they also last much longer. Their lifetimes are measured in trillions of years, not billions. Their long lives make them intriguing targets in the search for habitable worlds. But some types of Red Dwarf stars can be quite unstable when it comes to their magnetism and their flaring.

Our own Sun produces flares, but we are protected by our magnetosphere, and by the distance from the Sun to Earth. Credit: NASA/ Solar Dynamics Observatory,

A new study analyzed the photometric data on TRAPPIST-1 that was obtained by the K2 mission. The study, which is from the Konkoly Observatory and was led by astronomer Krisztián Vida, suggests that TRAPPIST-1 flares too frequently and too powerfully to allow life to form on its planets.

The study identified 42 strong flaring events in 80 days of observation, of which 5 were multi-peaked. The average time between flares was only 28 hours. These flares are caused by stellar magnetism, which causes the star to suddenly release a lot of energy. This energy is mostly in the X-ray or UV range, though the strongest can be seen in white light.

While it’s true that our Sun can flare, things are much different in the TRAPPIST system. The planets in that system are closer to their star than Earth is to the Sun. The most powerful flare observed in this data correlates to the most powerful flare observed on our Sun: the so-called Carrington Event.The Carrington Event happened in 1859. It was an enormously powerful solar storm, in which a coronal mass ejection struck Earth’s magnetosphere, causing auroras as far south as the Caribbean. It caused chaos in telegraph systems around the world, and some telegraph operators received electric shocks.

Earth survived the Carrington Event, but things would be much different on the TRAPPIST worlds. Those planets are much closer to their Sun, and the authors of this study conclude that storms like the Carrington Event are not isolated incidents on TRAPPIST-1. They occur so frequently that they would destroy any stability in the atmosphere, making it extremely difficult for life to develop. In fact, the study suggests that the TRAPPIST-1 storms could be hundreds or thousands of times more powerful than the storms that hit Earth.

A study from 2016 shows that these flares would cause great disturbances in the chemical composition of the atmosphere of the planets subjected to them. The models in that study suggest that it could take 30,000 years for an atmosphere to recover from one of these powerful flares. But with flares happening every 28 hours on TRAPPIST-1, the habitable planets may be doomed.

The Earth’s magnetic field helps protects us from the Sun’s outbursts, but it’s doubtful that the TRAPPIST planets have the same protection. This study suggests that planets like those in the TRAPPIST system would need magnetospheres of tens to hundreds of Gauss, whereas Earth’s magnetosphere is only about 0.5 Gauss. How could the TRAPPIST planets produce a magnetosphere powerful enough to protect their atmosphere?

It’s not looking good for the TRAPPIST planets. The solar storms that hit these worlds are likely just too powerful. Even without these storms, there are other things that may make these planets uninhabitable. They’re still an intriguing target for further study. The James Webb Space Telescope should be able to characterize the atmosphere, if any, around these planets.

Just don’t be disappointed if the James Webb confirms what this study tells us: the TRAPPIST system is a dead, lifeless, grouping of planets around a star that can’t stop flaring.

Solar Storms Ignite Aurora On Jupiter

Composite images from the Chandra X-Ray Observatory and the Hubble Space Telescope show the hyper-energetic x-ray auroras at Jupiter. The image on the left is of the auroras when the coronal mass ejection reached Jupiter, the image on the right is when the auroras subsided. The auroras were triggered by a coronal mass ejection from the Sun that reached the planet in 2011. Image: X-ray: NASA/CXC/UCL/W.Dunn et al, Optical: NASA/STScI

The Earthly Northern Lights are beautiful and astounding, but when it comes to planetary light shows, what happened at Jupiter in 2011 might take the cake. In 2011, a coronal mass ejection (CME) struck Jupiter, producing x-ray auroras 8 times brighter than normal, and hundreds of times more energetic than Earth’s auroras. A paper in the March 22nd, 2016 issue of the Journal of Geophysical Research gave the details.

The Sun emits a ceaseless stream of energetic particles called the solar wind. Sometimes, the Sun ramps up its output, and what is called a coronal mass ejection occurs. A coronal mass ejection is a massive burst of matter and electromagnetic radiation. Though they’re slow compared to other phenomena arising from the Sun, such as solar flares, CMEs are extremely powerful.

When the CME in 2011 reached Jupiter, NASA’s Chandra X-Ray Observatory was watching, the first time that Jupiter’s X-ray auroras were monitored at the same time that a CME arrived. Along with some very interesting images of the event, the team behind the study learned other things. The CME that struck Jupiter actually compressed that planet’s magnetosphere. It forced the boundary between the solar wind and Jupiter’s magnetic field in towards the planet by more than 1.6 million kilometers (1 million miles.)

The scientists behind this study used the data from this event to not only pinpoint the source of the x-rays, but also to identify areas for follow-up investigation. They’ll be using not only Chandra, but also the European Space Agency’s XMM Newton observatory to collect data on Jupiter’s magnetic field, magnetosphere, and aurora.

NASA’s Juno spacecraft will reach Jupiter this summer. One of its primary missions is to map Jupiter’s magnetic fields, and to study the magnetosphere and auroras. Juno’s results will be fascinating to anyone interested in Jupiter’s auroras.

Here at Universe Today we’ve written about Jupiter’s aurora’s here, coronal mass ejections here, and the Juno mission here.

Weekly Space Hangout – May 8, 2015: Emily Rice & Brian Levine from Astronomy on Tap

Host: Fraser Cain (@fcain)
Special Guest: Emily Rice & Brian Levine from Astronomy on Tap

Jolene Creighton (@jolene723 /
Charles Black (@charlesblack /
Brian Koberlein (@briankoberlein)
Dave Dickinson (@astroguyz /
Continue reading “Weekly Space Hangout – May 8, 2015: Emily Rice & Brian Levine from Astronomy on Tap”

NASA’s Magnetospheric Multiscale (MMS) Spacecraft Set for March Blastoff to study Earth’s Magnetic Reconnection Events

NASA’s first mission dedicated to study the process in nature known as magnetic reconnection undergoing final preparation for launch from Cape Canaveral, Florida in just under two weeks time.

The Magnetospheric Multiscale (MMS) mission is comprised of a quartet of identically instrumented observatories aimed at providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.

Magnetic reconnection is the process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.

“Magnetic reconnection is one of the most important drivers of space weather events,” said Jeff Newmark, interim director of the Heliophysics Division at NASA Headquarters in Washington.

“Eruptive solar flares, coronal mass ejections, and geomagnetic storms all involve the release, through reconnection, of energy stored in magnetic fields. Space weather events can affect modern technological systems such as communications networks, GPS navigation, and electrical power grids.”

The four MMS have been stacked on top of one another like pancakes, encapsulated in the payload fairing, transported to the launch pad, hoisted and mated to the top of the 195-foot-tall rocket.

NASA's Magnetospheric Multiscale (MMS) observatories are shown here in the clean room being processed for a March 12, 2015 launch from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.  Credit: NASA/Ben Smegelsky
NASA’s Magnetospheric Multiscale (MMS) observatories are shown here in the clean room being processed for a March 12, 2015 launch from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida. Credit: NASA/Ben Smegelsky

The nighttime launch of MMS on a United Launch Alliance Atlas V rocket should put on a spectacular sky show for local spectators along the Florida space coast as well as more distant located arcing out in all directions.

Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.

The launch window extends for 30 minutes.

Artist rendition of the four MMS spacecraft in orbit in Earth’s magnetic field. Credit: NASA
Artist rendition of the four MMS spacecraft in orbit in Earth’s magnetic field. Credit: NASA

After a six month check out phase the probes will start science operation in September.

Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.

The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where is visited them during an inspection tour by NASA Administrator Charles Bolden.

I asked Bolden to explain the goals of MMS during a one-on-one interview.

“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.

“MMS will study what effects that process … and how the magnetosphere protects Earth.”

MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer-
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer-

The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.

“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.

“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”

Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.

MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division.

Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.

Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.

Ken Kremer
Learn more about MMS, Mars rovers, Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 6: “MMS Update, Future of NASA Human Spaceflight, Curiosity on Mars,” Delaware Valley Astronomers Assoc (DVAA), Radnor, PA, 7 PM.

Mar 10-12: “MMS, Orion, SpaceX, Antares, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Weekly Space Hangout – Jan. 16, 2015: Hard Landings, False Alarms & Found Beagles

Host: Fraser Cain (@fcain)

Morgan Rehnberg ( / @MorganRehnberg )
Ramin Skibba (@raminskibba)
Brian Koberlein (@briankoberlein)
Continue reading “Weekly Space Hangout – Jan. 16, 2015: Hard Landings, False Alarms & Found Beagles”

How Many Ways Can the Sun Kill You?

The Sun has a Swiss army knife of ways it can do you in, from radiation to solar flares. And when it dies, it’s taking you with it. What are the various ways the Sun can do you in?

There’s a terrifying ball of fire a short 150 million km away. Which, in galactic terms, is right on our doorstep. This super-heated ball of plasma-y death, has temperatures and pressures so high that atoms of hydrogen are crushed into helium.

We’ve told ourselves we’re a safe distance away, and generally understate the dangers of being gravitationally bound to a massive ongoing nuclear explosion which is catastrophically larger than anything we’ve ever managed to create here on Earth. We take its warmth and life-giving light for granted, and barely give it a second thought as we sunbathe, or laugh gregariously while frying eggs on sidewalks on days when it’s scorchingly hot out.

Have we been lulled into a false sense of security by an ancient and secret society of bananas crazy sun cultists? Instead of worshiping the giant BBQ death ball, should we be cowering in fear, waiting for the next great solar flare? So, how dangerous is that thing? What are all the ways the Sun could do us in? And how many of them does my insurance cover?

First, in 4.5 billion years nothing has managed to destroy our planet. In fact, life itself has existed for almost Earth’s entire history, and nothing has scoured the planet clear of all forms of life. So, don’t worry the most reasonable risk we face from the Sun in our lifetimes is from a solar flare – a sudden blast of brightness on the surface of the Sun.

These occur when the Sun’s magnetic field lines snap and reconfigure, releasing an enormous amount of energy. It’s the equivalent of hundreds of billions of tonnes of TNT and if we’re staring down the barrel of this blast, it’ll fire a stream of high energy particles right up our nose.

Solar flares on the Sun
Solar flares on the Sun

Fortunately, the Earth has evolved in a highly radioactive environment. We’re blasted by radiation from the Sun all the time. The Earth’s magnetic field lines channel the particles towards the poles, which is why we get to see the beautiful auroral displays.

We’re at little risk from flares from the Sun, but our technology isn’t so lucky. The increase of geomagnetic activity in our vicinity can overload electrical grids and take satellites offline. The most powerful geomagnetic storm in history, known as the Carrington Event in 1859, generated auroras as far south as Cuba. It didn’t cause any damage then, but it would cause a lot of damage to our fragile technology today.

For those of you now resting comfortably I say… Not so fast. This episode isn’t over yet. Our Sun is heating up, and its energy output is increasing.

As it uses up the hydrogen in its core, this region of the Sun contracts a little, and the Sun increases in temperature to balance things out. Over the next few hundred million years, temperatures on Earth will rise and rise. Within a billion years, the surface of the planet will be an inhospitable oven.

Mercury seen by Mariner 10. Image credit: NASA
The Earth will one day be as dry and baked as Mercury. Image credit: NASA

Eventually the oceans will boil and the hydrogen will be blown out of the atmosphere by the Sun’s solar wind. Even though the Sun will remain in its main sequence phase for another 4 billion years after that, any life will need to be living underground.

Of course, as we’ve discussed in previous episodes, the Sun’s final act of destruction will happen when it runs out of hydrogen fuel in its core. The core will contract and the Sun will puff up into a red giant, consuming the orbits of Mercury, Venus and possibly the Earth. And even if it doesn’t consume the Earth, it’ll hit our planet with so much heat and radiation that it’ll finally get around to scouring any life off the surface.

So, like your fanatical sun cultist friends. Don’t worry about the Sun. It might make sense to keep some spare batteries around for the times when solar flares knock out the lights for a few days, but the Sun is remarkably safe and stable. We’ve got billions of years of warm light and heat from our star. But after that, it might make sense to shop for a new home.

So what do you think? Where do you think we should move when the temperature of the Sun heats up?

The Sun Pops Off Two X-Class Solar Flares in One Day

In only a little over an hour, the Sun released two X-class solar flares today. The first occurred at 11:42 UTC (7:42 a.m. EDT) and the second blasted out at 12:52 UTC (8:52 a.m. EDT) on June 10, 2014. According to, forecasters were expecting an X-class flare today, but not two…and certainly not from region of the Sun where the flares originated. Solar scientists have been keeping an eye on sunspot regions AR2080 and AR2085, especially since they are now directly facing Earth, and those two sunspots have ‘delta-class’ magnetic fields that harbor energy for X-flares.

But the active region on the Sun that actually produced the flares was AR2087, which just appeared “around the corner” on the southeastern limb of the Sun. The first flare was a X2.2-flare and the second was an X1.5-flare.

See the image of #2 below from the Solar Dynamics Observatory:

The second X-class flare of June 10, 2014, appears as a bright flash on the left side of this image from NASA’s Solar Dynamics Observatory. This image shows light in the 193-angstrom wavelength, which is typically colorized in yellow. It was captured at 8:55 a.m EDT, just after the flare peaked. Image Credit: NASA/SDO.
The second X-class flare of June 10, 2014, appears as a bright flash on the left side of this image from NASA’s Solar Dynamics Observatory. This image shows light in the 193-angstrom wavelength, which is typically colorized in yellow. It was captured at 8:55 a.m EDT, just after the flare peaked. Image Credit: NASA/SDO.

Solar flares are explosions on the Sun that release energy, light and high speed particles into space, and the biggest flares are known as X-class.

Here are some recent astrophotos of the Sun taken by members of Universe Today’s Flickr group:

The Sun in white light on June 10, 2014. Taken with a William Optics 70mm refractor fitted with a Thousand Oaks solar filter, 2 x Barlow and Canon 1100D. Credit and copyright: Mary Spicer.
The Sun in white light on June 10, 2014. Taken with a William Optics 70mm refractor fitted with a Thousand Oaks solar filter, 2 x Barlow and Canon 1100D. Credit and copyright: Mary Spicer.
The full solar disk in hydrogen alpha on June 10, 2014. Credit and copyright: John Brady.
The full solar disk in hydrogen alpha on June 10, 2014. Credit and copyright: John Brady.
A look at the Sun from the UK on June 9, 2014. Prime focus single shot in whitelight, Canon 600D attached to Maksutov 127mm telescope fitted with homemade Baader Solarfilm filter. Credit and copyright: Sarah and Simon Fisher.
A look at the Sun from the UK on June 9, 2014. Prime focus single shot in whitelight, Canon 600D attached to Maksutov 127mm telescope fitted with homemade Baader Solarfilm filter. Credit and copyright: Sarah and Simon Fisher.

Solar flares are classified on a system that divides solar flares according to their strength. The smallest ones are A-class (near background levels), followed by B, C, M and X. Similar to the Richter scale for earthquakes, each letter represents a 10-fold increase in energy output. So an X is ten times an M and 100 times a C. Within each letter class there is a finer scale from 1 to 9.

Here’s NASA’s video guide to X-Class flares:

NASA says these flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). The number of solar flares increases approximately every 11 years. Watch this video below about why solar scientists think the solar maximum is happening now:

Read more on today’s flares from NASA.