Not Just a Planet Hunter. TESS Found Over 25,000 Flaring Stars

One of the beauties of modern-day space telescopes is that the data they produce, which is eventually wholly released to the public, contains useful information about much more than their primary mission objective. Other astronomers can then sift through the data using their own ideas, and in many cases, their own algorithms. Recently, a team from Poland turned a flare-searching algorithm on TESS’s planet-hunting data, and found an astonishing 25,229 stars with solar flares in the data set.

Continue reading “Not Just a Planet Hunter. TESS Found Over 25,000 Flaring Stars”

During a Solar Flare, Dark Voids Move Down Towards the Sun. Now We Know Why

Solar flares are complex phenomena. They involve plasma, electromagnetic radiation across all wavelengths, activity in the Sun’s atmosphere layers, and particles travelling at near light speed. Spacecraft like NASA’s Solar and Heliophysics Observatory (SOHO) and the Parker Solar Probe shed new light on the Sun’s solar flares.

But it was a Japanese-led mission called Yohkoh that spotted an unusual solar flare in 1999. This flare displayed a downward flowing motion toward the Sun along with the normal outward flow. What caused it?

A team of researchers think they’ve figured it out.

Continue reading “During a Solar Flare, Dark Voids Move Down Towards the Sun. Now We Know Why”

Good News! Red Dwarfs Blast Their Superflares out the Poles, Sparing Their Planets From Destruction

x

The only known life in the universe lives on a mid-size rocky planet that orbits a mid-size yellow star. That makes our planet a bit unusual. While small rocky planets are common in the galaxy, yellow stars are not. Small red dwarf stars are much more typical, making up about 75% of the stars in the Milky Way. This is why most of the potentially habitable exoplanets we’ve discovered orbit red dwarfs.

Continue reading “Good News! Red Dwarfs Blast Their Superflares out the Poles, Sparing Their Planets From Destruction”

The Sun is Mellow Yellow Today. Billions of Years Ago? Not So Much

Planetary formation theory has been undergoing a lot of changes recently, with an ever expanding litany of events that can potentially impact it.  Everything from gravity to magnetic fields seems to impact this complex process.  Now scientists want to add another confounding factor – massive solar flares thousands of times more powerful than the most powerful we have ever observed from the Sun.

Continue reading “The Sun is Mellow Yellow Today. Billions of Years Ago? Not So Much”

A Recent Megaflare Shows that Proxima Centauri is not a Nice Place to Live

Artist's conception of a violent stellar flare erupting on neighboring star, Proxima Centauri. The flare is the most powerful ever recorded from the star, and is giving scientists insight into the hunt for life in M dwarf star systems, many of which have unusually lively stars. Credit: NRAO/S. Dagnello.

Proxima b, the closest exoplanet to our Solar System, has been a focal point of scientific study since it was first confirmed (in 2016). This terrestrial planet (aka. rocky) orbits Proxima Centauri, an M-type (red dwarf) star located 4.2 light-years beyond our Solar System – and is a part of the Alpha Centauri system. In addition to its proximity and rocky composition, it is also located within its parent star’s habitable zone (HZ).

Until a mission can be sent to this planet (such as Breakthrough Starshot), astrobiologists are forced to postulate about the possibility that life could exist there. Unfortunately, an international campaign that monitored Proxima Centauri for months using nine space- and ground-based telescopes recently spotted an extreme flare coming from the star, one which would have rendered Proxima b uninhabitable.

Continue reading “A Recent Megaflare Shows that Proxima Centauri is not a Nice Place to Live”

Researchers Discover the Source of the Sun’s Most Dangerous High-Energy Particles

Sometimes the sun spits out high-energy particles which slam into the Earth, potentially disrupting our sensitive electronics. New research has found that these particles originate in the plasma of the sun itself, and are trapped there by strong magnetic fields. When those fields weaken, the particles blast out.

Continue reading “Researchers Discover the Source of the Sun’s Most Dangerous High-Energy Particles”

Do Ripples on the Surface of the Sun tell us that a Flare is Coming?

Credit: NSF

Flares from the sun are some of the nastiest things in the solar system. When the sun flares, it belches out intense X-ray radiation (and sometimes even worse). Predicting solar flares is a tricky job, and a new research paper sheds light on a possible new technique: looking for telltale ripples in the surface of the sun minutes before the blast comes.

Continue reading “Do Ripples on the Surface of the Sun tell us that a Flare is Coming?”

New Solar Model Successfully Predicted Seven of the Sun’s Last Nine Big Flares

X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO
X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO

Since it launched in 2010, the Solar Dynamics Observatory has helped scientists understand how the Sun’s magnetic field is generated and structured, and what causes solar flares. One of the main goals of the mission was to be able to create forecasts for predicting activity on the Sun.   

Using mission data from the past 10 years, SDO scientists have now developed a new model that successfully predicted seven of the Sun’s biggest flares from the last solar cycle, out of a set of nine.

Continue reading “New Solar Model Successfully Predicted Seven of the Sun’s Last Nine Big Flares”

The Sun is less active magnetically than other stars

GOES-17 Solar Ultraviolet Imager captures the Sun at different wavelengths. Credit: NOAA

Our Sun is the source of life on Earth. Its calm glow across billions of years has allowed life to evolve and flourish on our world. This does not mean our Sun doesn’t have an active side. We have observed massive solar flares, such as the 1859 Carrington event, which produced northern lights as far south as the Caribbean, and drove electrical currents in telegraph lines. If such a flare occurred in Earth’s direction today, it would devastate our electrical infrastructure. But fortunately for us, the Sun is mostly calm. Unusually calm when compared to other stars.

Continue reading “The Sun is less active magnetically than other stars”

Without a Magnetosphere, Planets Orbiting Flare Stars Don’t Stand a Chance

superflare
An artist's conception of a superflare event, on a dwarf star. Image credit: Mark Garlick/University of Warwick

Earthlings are fortunate. Our planet has a robust magnetic shield. Without out magnetosphere, the Sun’s radiation would’ve probably ended life on Earth before it even got going. And our Sun is rather tame, in stellar terms.

What’s it like for exoplanets orbiting more active stars?

Continue reading “Without a Magnetosphere, Planets Orbiting Flare Stars Don’t Stand a Chance”