One of the Brightest Star-Forming Regions in the Milky Way, Seen in Infrared

Certain parts of the galaxy are more magical than others.  There are barren wastelands where barely a particle strays through occasionally, and there are fantastical nebulae that can literally light up the sky.  But beyond their good looks, those nebulae hold secrets to understanding some of the most important features of any galaxy – stars. Now, for the first time, a team from the University of Maryland managed to capture a high resolution image of one of the most active star-forming regions in our part of the galaxy.  Data from that image are not only spectacular, but can illuminate the details of the star formation process.

Continue reading “One of the Brightest Star-Forming Regions in the Milky Way, Seen in Infrared”

The Magnetic Fields Swirling Within the Whirlpool Galaxy

Messier objects are some of the most imaged objects in the universe.  In part that’s because many of them are so visibly appealing.  A good example of that is the Whirlpool galaxy, M51, which recently received an even more dramatic visual representation with a new photo released by NASA.  In it, the magnetic fields that are holding the galaxy together and tearing it apart at the same time are clearly visible.  And it is even more stunning to look at.

Continue reading “The Magnetic Fields Swirling Within the Whirlpool Galaxy”

A Galaxy is Making New Stars Faster Than its Black Hole Can Starve Them for Fuel

A monster lurks at the heart of many galaxies – even our own Milky Way. This monster possesses the mass of millions or billions of Suns. Immense gravity shrouds it within a dark cocoon of space and time – a supermassive black hole. But while hidden in darkness and difficult to observe, black holes can also shine brighter than an entire galaxy. When feeding, these sleeping monsters awaken transforming into a quasar – one of the Universe’s most luminous objects. The energy a quasar radiates into space is so powerful, it can interfere with star formation for thousands of light years across their host galaxies. But one galaxy appears to be winning a struggle against its awoken blazing monster and in a recent paper published in the Astrophysical Journal, astronomers are trying to determine how this galaxy survives.

Animation of Interstellar Matter Falling into a Black Hole Creating a Quasar – ESA
Continue reading “A Galaxy is Making New Stars Faster Than its Black Hole Can Starve Them for Fuel”

New View of the Swan Nebula From NASA’s Airborne SOFIA Telescope

The Omega Nebula (Messier 17), also known as the Swan Nebula because of its distinct appearance, is one of the most well-known nebulas in our galaxy. Located about 5,500 light-years from Earth in the constellation Sagittarius, this nebula is also one of the brightest and most massive star-forming regions in the Milky Way. Unfortunately, nebulas are very difficult to study because of the way their clouds of dust and gas obscure their interiors.

For this reason, astronomers are forced to examine nebulas in the non-visible wavelength to get a better idea of their makeup. Using the Stratospheric Observatory for Infrared Astronomy (SOFIA), a team of NASA scientists recently observed the Swan Nebula in the infrared wavelength. What they found has revealed a great deal about how this nebula and stellar nursery evolved over time.

Continue reading “New View of the Swan Nebula From NASA’s Airborne SOFIA Telescope”

This is the Core of the Milky Way, Seen in Infrared, Revealing Features Normally Hidden by Gas and Dust

The world’s largest airborne telescope, SOFIA, has peered into the core of the Milky Way and captured a crisp image of the region. With its ability to see in the infrared, SOFIA (Stratospheric Observatory For Infrared Astronomy) is able to observe the center of the Milky Way, a region dominated by dense clouds of gas and dust that block visible light. Those dense clouds are the stuff that stars are born from, and this latest image is part of the effort to understand how massive stars form.

Continue reading “This is the Core of the Milky Way, Seen in Infrared, Revealing Features Normally Hidden by Gas and Dust”

Astronomers See the Wreckage from a Collision Between Exoplanets

The history of our Solar System is punctuated with collisions. Collisions helped create the terrestrial planets and end the reign of the dinosaurs. And a massive collision between Earth and an ancient body named Theia likely created the Moon.

Now astronomers have found of evidence of a collision between two exoplanets in a distant solar system.

Continue reading “Astronomers See the Wreckage from a Collision Between Exoplanets”

The First Molecule that was Possible in the Universe has been Seen in Space

Image of planetary nebula NGC 7027 with illustration of helium hydride molecules. In this planetary nebula, SOFIA detected helium hydride, a combination of helium (red) and hydrogen (blue), which was the first type of molecule to ever form in the early universe. This is the first time helium hydride has been found in the modern universe. Credits: NASA/ESA/Hubble Processing: Judy Schmidt

It takes a rich and diverse set of complex molecules for things like stars, galaxies, planets and lifeforms like us to exist. But before humans and all the complex molecules we’re made of could exist, there had to be that first primordial molecule that started a long chain of chemical events that led to everything you see around you today.

Though it’s been long theorized to exist, the lack of observational evidence for that molecule was problematic for scientists. Now they’ve found it and those scientists can rest easy. Their predictive theory wins!

Continue reading “The First Molecule that was Possible in the Universe has been Seen in Space”

Newborn Stars in the Orion Nebula Prevent Other Stars from Forming

The Orion Nebula, one of the most studied objects in the sky. Image: NASA

The Orion Nebula is one of the most observed and photographed objects in the night sky. At a distance of 1350 light years away, it’s the closest active star-forming region to Earth.

This diffuse nebula is also known as M42, and has been studied intensely by astronomers for many years. From it, astronomers have learned a lot about star formation, planetary system formation, and other bedrock topics in astronomy and astrophysics. Now a new discovery has been made which goes against the grain of established theory: stellar winds from newly-formed massive stars may prevent other stars from forming in their vicinity. They also play a much larger role in star formation, and in galaxy evolution, than previously thought.

Continue reading “Newborn Stars in the Orion Nebula Prevent Other Stars from Forming”