Musk Suggests That Starship Will Probably Make an Orbital Flight in November

SpaceX Founder and CEO Elon Musk recently took to Twitter and hinted that the much-anticipated Starship—currently undergoing upgrades in preparation for its upcoming maiden flight—could launch as soon as November.

Responding to a question from a curious Twitter account asking about updates for Starship’s orbital flight date, Musk responded, “Late next month maybe, but November seems highly likely. We will have two boosters & ships ready for orbital flight by then, with full stack production at roughly one every two months.” As usual, his tweet garnered thousands of likes and hundreds of retweets.

Continue reading “Musk Suggests That Starship Will Probably Make an Orbital Flight in November”

More Rocket Launches Could Damage the Ozone Layer

There are few things in this world that brings feelings of awe and wonder more than a rocket launch. Watching a literal tower of steel slowly lift off from the ground with unspeakable power reminds us of what humanity can achieve despite our flaws, disagreements, and differences, and for the briefest of moments these magnificent spectacles are capable of bringing us all together regardless of race, creed, and religion.

Continue reading “More Rocket Launches Could Damage the Ozone Layer”

In a Comprehensive new Test, the EmDrive Fails to Generate any Thrust

Artist's concept of an interstellar craft. Credit and Copyright: Mark Rademaker

The EmDrive is a hypothetical rocket that proponents claim can generate thrust with no exhaust. This would violate all known physics. In 2016, a team at NASA’s Eagleworks lab claimed to measure thrust from an EmDrive device, the news of which caused quite a stir. The latest attempt to replicate the shocking results has resulted in a simple answer: the Eagleworks measurement was from heating of the engine mount, not any new physics.

Continue reading “In a Comprehensive new Test, the EmDrive Fails to Generate any Thrust”

This Rocket Engine’s Thrust Chamber was 3D-printed and Only has Three Parts

This fully 3D-printed thrust chamber is built in just three parts and could power the upper stages of future rockets. This first test lasted 30 seconds and was carried out on 26 May 2020 at the DLR German Aerospace Center’s Lampoldshausen testing facility. Credit: ESA/DLR.

This week, European engineers hot-fire tested a fully 3D-printed thrust chamber that could one day power the upper stages for rockets. The chamber has just three parts, and was constructed using additive layer manufacturing, another name for 3D printing.  

This hot-fire test lasted 30 seconds and was carried out on May 26, 2020 at the DLR German Aerospace Center’s Lampoldshausen testing facility. The European Space Agency said that additional tests are planned for next week.

Continue reading “This Rocket Engine’s Thrust Chamber was 3D-printed and Only has Three Parts”

Every Part of Blue Origin’s New Glenn Rocket is Gigantic, Including its Nose Cone

One half of the fairing for Blue Origin's New Glenn rocket. Image Credit: Blue Origin

Massive. Enormous. Huge. Gigantic. And whatever other words you find in the thesaurus all do the job when it comes to describing Blue Origin’s New Glenn Rocket. Especially its nosecone.

Continue reading “Every Part of Blue Origin’s New Glenn Rocket is Gigantic, Including its Nose Cone”

A New Kind of Rocket that’s Lightweight and Easier to Construct: a Rotating Detonating Engine. Unfortunately, it’s Also Completely Unpredictable

The Falcon Heavy STP-2 mission launched from Kennedy Space Center on Tuesday, June 25, 2019. Image Credit: Alex Brock Instagram: @alexhbrock, Website: www.alexhbrock.com

In the current era of space exploration, the name of the game is “cost-effective.” By reducing the costs associated with individual launches, space agencies and private aerospace companies (aka. NewSpace) are ensuring that access to space is greater. And when it comes to the cost of launches, the single-greatest expense is that of propellant. To put it simply, breaking free to Earth’s gravity takes a lot of rocket fuel!

To address this, researchers at the University of Washington recently developed a mathematical model that describes the workings of a new launch mechanism: the rotating detonation engine (RDE). This lightweight design offers greater fuel-efficiency and is less complicated to construct. However, it comes with the rather large trade-off of being too unpredictable to be put into service right now.

Continue reading “A New Kind of Rocket that’s Lightweight and Easier to Construct: a Rotating Detonating Engine. Unfortunately, it’s Also Completely Unpredictable”

Watch NASA Test an SLS Tank to Destruction

Screen Capture from SLS Hydrogen tank test. Image Credit: NASA

By the time a rocket actually launches, it’s components have been through a ton of rigorous testing. That’s certainly true of NASA’s SLS (Space Launch System) which is the most powerful rocket ever built. That’s right, something is finally going to surpass the Saturn V, the rocket that took Apollo astronauts to the Moon.

Continue reading “Watch NASA Test an SLS Tank to Destruction”

This is How NASA Releases Almost Half a Million Gallons of Water in 60 Seconds

The suppression system at Launch Pad 39B releases almost a half-million gallons of water to protect the SLS during launch. Image Credit: NASA/Kim Shiflett
The suppression system at Launch Pad 39B releases almost a half-million gallons of water to protect the SLS during launch. Image Credit: NASA/Kim Shiflett

As rockets become more and more powerful, the systems that protect them need to keep pace. NASA will use almost half a million gallons of water to keep the Space Launch System (SLS) safe and stable enough to launch successfully. The system that delivers all that water is called the Ignition Overpressure Protection and Sound Suppression (IOP/SS) water deluge system, and seeing it in action is very impressive.

Continue reading “This is How NASA Releases Almost Half a Million Gallons of Water in 60 Seconds”

Engineers Propose a Rocket that Consumes Itself as it Flies to Space

A team of engineers from the University of Glasgow and the Ukraine have created an engine that could cut costs by "eating itself". Credit: Ken Kremer/kenkremer.com

When it comes to the new era of space exploration, one of the primary focuses has been on cutting costs. By reducing the costs associated with individual launches, space agencies and private aerospace companies will not only be able to commercialize Low Earth-Orbit (LEO), but also mount far more in the way of exploration missions and maybe even colonize space.

Several methods have been proposed so far for reducing launch costs, which include reusable rockets and single-stage-to-orbit rockets. However, a team of engineers from the University of Glasgow and the Ukraine recently proposed an entirely different idea that could make launching small payloads affordable – a self-eating rocket! This “autophage” rocket could easily send small satellites into space more easily and more affordably.

The study which describes how they built and tested the “autophage” engine recently appeared in the Journal of Spacecraft and Rockets under the title “Autophage Engines: Toward a Throttleable Solid Motor“. The team was led by Vitaly Yemets and Patrick Harkness – a Professor from the Oles Honchar Dnipro National University in the Ukraine and a Senior Lecturer from the University of Glasgow, respectively.

The autophage engine, being tested at the Dnipro testing lab in the Ukraine. Credit: University of Glasgow

Together, the team addressed one the most pressing issues when it comes to rockets today. This has to do with the fact that storage tanks, which contain the rocket’s propellants as they climb, weight many times the spacecraft’s payload. This reduces the efficiency of the launch vehicle and also adds to the problem of space debris, since these fuel tanks are disposable and fall away when spent.

As Dr Patrick Harkness, who led Glasgow’s contribution to the work, explained in a recent University of Glasgow press release:

“Over the last decade, Glasgow has become a centre of excellence for the UK space industry, particularly in small satellites known as ‘CubeSats’, which provide researchers with affordable access to space-based experiments. There’s also potential for the UK’s planned spaceport to be based in Scotland. However, launch vehicles tend to be large because you need a large amount of propellant to reach space. If you try to scale down, the volume of propellant falls more quickly than the mass of the structure, so there is a limit to how small you can go. You will be left with a vehicle that is smaller but, proportionately, too heavy to reach an orbital speed.”

In contrast, an autophage engine consumes its own structure during ascent, so more cargo capacity could be freed-up and less debris would enter orbit. The propellant consists of a solid fuel rod (made of a solid plastic like polyethylene) on the outside and an oxidizer on the inside. By driving the rod into a hot engine, the fuel and oxidizer are vaporized to create gas that then flows into the combustion chamber to produce thrust.

The use of autophage engines on rockets could allow for the deployment of small satellites cheaply and efficiently, without adding to the problem of space debris. Credit: AMNH.

“A rocket powered by an autophage engine would be different,” said Dr. Harkness. “The propellant rod itself would make up the body of the rocket, and as the vehicle climbed the engine would work its way up, consuming the body from base to tip. That would mean that the rocket structure would actually be consumed as fuel, so we wouldn’t face the same problems of excessive structural mass. We could size the launch vehicles to match our small satellites, and offer more rapid and more targeted access to space.”

The research team also showed that the engine could be throttled by simply varying the speed at which the rod is driven into the engine, which is something rare in a solid motor. During the lab tests, the team has been able to sustain rocket operations for 60 seconds at a time. As Dr. Harkness said, the team hopes to build on this and eventually conduct a launch test:

“While we’re still at an early stage of development, we have an effective engine testbed in the laboratory in Dnipro, and we are working with our colleagues there to improve it still further. The next step is to secure further funding to investigate how the engine could be incorporated into a launch vehicle.”

Another challenge of the modern space age is how to deliver additional payloads and satellites into orbit without creating more in the way of orbital clutter. By introducing an engine that can make for cheap launches that also has no disposable parts, the autophage could be a game-changing technology, one which is right up there with fully-recoverable rockets.

The research team also consisted of Mykola Dron and Anatoly Pashkov – a Professor and Senior Researcher from Oles Honchar Dnipro National University – and Kevin Worrall and Michael Middleton – a Research Associate and M.S. student from the University of Glasgow.

Further Reading: University of Glasgow, Journal of Spacecraft and Rockets