This Rocket Engine’s Thrust Chamber was 3D-printed and Only has Three Parts

This week, European engineers hot-fire tested a fully 3D-printed thrust chamber that could one day power the upper stages for rockets. The chamber has just three parts, and was constructed using additive layer manufacturing, another name for 3D printing.  

This hot-fire test lasted 30 seconds and was carried out on May 26, 2020 at the DLR German Aerospace Center’s Lampoldshausen testing facility. The European Space Agency said that additional tests are planned for next week.

Continue reading “This Rocket Engine’s Thrust Chamber was 3D-printed and Only has Three Parts”

A New Kind of Rocket that’s Lightweight and Easier to Construct: a Rotating Detonating Engine. Unfortunately, it’s Also Completely Unpredictable

In the current era of space exploration, the name of the game is “cost-effective.” By reducing the costs associated with individual launches, space agencies and private aerospace companies (aka. NewSpace) are ensuring that access to space is greater. And when it comes to the cost of launches, the single-greatest expense is that of propellant. To put it simply, breaking free to Earth’s gravity takes a lot of rocket fuel!

To address this, researchers at the University of Washington recently developed a mathematical model that describes the workings of a new launch mechanism: the rotating detonation engine (RDE). This lightweight design offers greater fuel-efficiency and is less complicated to construct. However, it comes with the rather large trade-off of being too unpredictable to be put into service right now.

Continue reading “A New Kind of Rocket that’s Lightweight and Easier to Construct: a Rotating Detonating Engine. Unfortunately, it’s Also Completely Unpredictable”

This is How NASA Releases Almost Half a Million Gallons of Water in 60 Seconds

The suppression system at Launch Pad 39B releases almost a half-million gallons of water to protect the SLS during launch. Image Credit: NASA/Kim Shiflett

As rockets become more and more powerful, the systems that protect them need to keep pace. NASA will use almost half a million gallons of water to keep the Space Launch System (SLS) safe and stable enough to launch successfully. The system that delivers all that water is called the Ignition Overpressure Protection and Sound Suppression (IOP/SS) water deluge system, and seeing it in action is very impressive.

Continue reading “This is How NASA Releases Almost Half a Million Gallons of Water in 60 Seconds”

Engineers Propose a Rocket that Consumes Itself as it Flies to Space

When it comes to the new era of space exploration, one of the primary focuses has been on cutting costs. By reducing the costs associated with individual launches, space agencies and private aerospace companies will not only be able to commercialize Low Earth-Orbit (LEO), but also mount far more in the way of exploration missions and maybe even colonize space.

Several methods have been proposed so far for reducing launch costs, which include reusable rockets and single-stage-to-orbit rockets. However, a team of engineers from the University of Glasgow and the Ukraine recently proposed an entirely different idea that could make launching small payloads affordable – a self-eating rocket! This “autophage” rocket could easily send small satellites into space more easily and more affordably.

The study which describes how they built and tested the “autophage” engine recently appeared in the Journal of Spacecraft and Rockets under the title “Autophage Engines: Toward a Throttleable Solid Motor“. The team was led by Vitaly Yemets and Patrick Harkness – a Professor from the Oles Honchar Dnipro National University in the Ukraine and a Senior Lecturer from the University of Glasgow, respectively.

The autophage engine, being tested at the Dnipro testing lab in the Ukraine. Credit: University of Glasgow

Together, the team addressed one the most pressing issues when it comes to rockets today. This has to do with the fact that storage tanks, which contain the rocket’s propellants as they climb, weight many times the spacecraft’s payload. This reduces the efficiency of the launch vehicle and also adds to the problem of space debris, since these fuel tanks are disposable and fall away when spent.

As Dr Patrick Harkness, who led Glasgow’s contribution to the work, explained in a recent University of Glasgow press release:

“Over the last decade, Glasgow has become a centre of excellence for the UK space industry, particularly in small satellites known as ‘CubeSats’, which provide researchers with affordable access to space-based experiments. There’s also potential for the UK’s planned spaceport to be based in Scotland. However, launch vehicles tend to be large because you need a large amount of propellant to reach space. If you try to scale down, the volume of propellant falls more quickly than the mass of the structure, so there is a limit to how small you can go. You will be left with a vehicle that is smaller but, proportionately, too heavy to reach an orbital speed.”

In contrast, an autophage engine consumes its own structure during ascent, so more cargo capacity could be freed-up and less debris would enter orbit. The propellant consists of a solid fuel rod (made of a solid plastic like polyethylene) on the outside and an oxidizer on the inside. By driving the rod into a hot engine, the fuel and oxidizer are vaporized to create gas that then flows into the combustion chamber to produce thrust.

The use of autophage engines on rockets could allow for the deployment of small satellites cheaply and efficiently, without adding to the problem of space debris. Credit: AMNH.

“A rocket powered by an autophage engine would be different,” said Dr. Harkness. “The propellant rod itself would make up the body of the rocket, and as the vehicle climbed the engine would work its way up, consuming the body from base to tip. That would mean that the rocket structure would actually be consumed as fuel, so we wouldn’t face the same problems of excessive structural mass. We could size the launch vehicles to match our small satellites, and offer more rapid and more targeted access to space.”

The research team also showed that the engine could be throttled by simply varying the speed at which the rod is driven into the engine, which is something rare in a solid motor. During the lab tests, the team has been able to sustain rocket operations for 60 seconds at a time. As Dr. Harkness said, the team hopes to build on this and eventually conduct a launch test:

“While we’re still at an early stage of development, we have an effective engine testbed in the laboratory in Dnipro, and we are working with our colleagues there to improve it still further. The next step is to secure further funding to investigate how the engine could be incorporated into a launch vehicle.”

Another challenge of the modern space age is how to deliver additional payloads and satellites into orbit without creating more in the way of orbital clutter. By introducing an engine that can make for cheap launches that also has no disposable parts, the autophage could be a game-changing technology, one which is right up there with fully-recoverable rockets.

The research team also consisted of Mykola Dron and Anatoly Pashkov – a Professor and Senior Researcher from Oles Honchar Dnipro National University – and Kevin Worrall and Michael Middleton – a Research Associate and M.S. student from the University of Glasgow.

Further Reading: University of Glasgow, Journal of Spacecraft and Rockets

 

Launching Rockets from Balloons is About to be a Thing, But We Need a Better Name than “Rockoons”

One of the technological hurdles of our age is to get people and equipment into space more cheaply. SpaceX gets a lot of the headlines around that, with their reusable rockets. And so does Blue Origin, to some degree. Now a small start-up affiliated with Purdue University is tackling the problem and making some headway.

The company is called Leo Aerospace LLC and they’re using balloons to lower the cost of putting micro-satellites into orbit, rather than reusable rockets. The balloons will be reusable, but the rockets won’t.

Leo Aerospace plans to revive a decades-old method of putting satellites into space. They’re using hot air balloons to lift the rocket and its micro-satellite payload 18 km (11 miles) above Earth. At that altitude, there’s 95% less atmosphere. This means much less drag on the rocket, which translates into smaller rockets with less fuel. This is an intriguing idea, if not for the unfortunate name.

The rockoons will be used to launch rockets into sub-orbital and orbital flights. Sub-orbitals are often used by researchers because it gives them access to zero gravity and to vacuum, both of which are necessary for some experiments. According to Leo Aerospace, there’s something revolutionary about their plans.

“We’re targeting the microsatellites by saying, ‘You don’t have to ride-share with anyone. We can guarantee you will be our only payload and we will be focused on you.’” – Drew Sherman, Leo Aerospace’s Head of Vehicle Development.

They intend on targeting micro-satellite developers. Micro-satellites are often hitch-hikers on larger payloads, which basically means they’re second-class customers. They have to wait until there’s room for their micro-satellite on a traditional rocket carrying a larger payload. This can mean long delays of several months, and that micro-satellite developers have to compromise when it comes to the orbits they can obtain. It can also make micro-satellite missions difficult to plan and execute efficiently and economically. Micro-satellites are becoming more and more capable, so having a launch system tailor-made for them could indeed be revolutionary.

“We’re targeting the microsatellites by saying, ‘You don’t have to ride-share with anyone. We can guarantee you will be our only payload and we will be focused on you,’” said Drew Sherman, Leo Aerospace’s head of vehicle development. “‘We will work with you exclusively to get you into orbit. You won’t have to worry about other payloads or getting dropped off in the wrong spot.’”

The flexibility of the rockoon system that Leo Aerospace is developing will be intriguing for micro-satellites. Rockoons will give micro-satellites the flexibility they need to operate efficiently. The launch can be scheduled and adapted to the needs of the individual satellite. “Our goal is to give people access to space. The only way to do that right now is to help people get their satellite into orbit. That’s where we want to leave our mark,” said Abishek Murali, Head of Mission Engineering at Leo Aerospace.

“Our goal is to give people access to space.” – Abishek Murali, Head of Mission Engineering at Leo Aerospace

The rockoon itself is a hybrid of a balloon and a rocket. The hybrid design takes advantage of physics by using the balloon to float the rocket 18 km high before launching the rocket. The rockoon has Leo Aerospace’s own patent-pending technology to control the pitch and angle of the launch, allowing for precision launches.

Rockoons were first used by the US Air Force back in the 1950s. But this next generation of rockoons, coupled with modern micro-satellites, will be much more capable than the 1950s technology.

Leo Aerospace LLC was started by five then-Purdue University students as a club and then turned into a business. The founders are, from left, Mike Hepfer, head of product development; Drew Sherman, head of vehicle development; Abishek Murali, head of mission engineering; Dane Rudy; chief executive officer; and Bryce Prior, head of operations and strategy. Image: Leo Aerospace.

Currently, Leo Aerospace is in the development and funding phase. They’ve obtained some funding from the National Science Foundation, and from a venture capital firm. They have about half of the $250,000 they need. They plan to conduct their first sub-orbital flight in 2020, and to launch their first micro-satellite into orbit in 2022. They intend to use existing approved launch sites.

Leo Aerospace was founded by five then-students at Purdue University. Leo started as a club, but the former students have turned it into a business. And that business seems to have a bright future. They conducted a customer discovery and market validation study and found a large demand for a better way to launch micro-satellites.

“We want to be part of the space market,” Murali said. “People are interested in space and creating technologies that not only can operate in space but also help people back on Earth. What we’re trying to do is help them get there.”

But they still need a better name than “rockoons.”

Astronomy Cast Ep. 483: Stopping in Space

It’s one thing to get from Earth to space, but sometimes you want to do the opposite. You want to get into orbit or touch down gently on the surface of a planet and explore it. How do spacecraft stop? And what does that even mean when everything is orbiting?

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Astronomy Cast Ep. 479: Rockets pt. 1 – What Does “Single Stage To Orbit” Really Mean?

To celebrate the launch of the Falcon Heavy, we figured it was time for an all new series, this time on the rockets that carry us to space. Today we’re going to talk about why single stage to orbit rockets are so difficult to carry out.

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!