New Canadian Radio Telescope is Detecting Fast Radio Bursts

Since they were first detected in 2007, Fast Radio Bursts (FRBs) have been a source of mystery to astronomers. In radio astronomy, this phenomenon refers to transient radio pulses coming from distant sources that typically last a few milliseconds on average. Despite the detection of dozens of events since 2007, scientists are still not sure what causes them – though theories range from exploding stars, black holes, and magnetars to alien civilizations!

To shed light on this mysterious phenomena, astronomers are looking to new instruments to help search for and study FRBs. One of these is the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a revolutionary new radio telescope located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia. On July 25th, still in its first year, this telescope made its first-ever detection, an event known as FRB 180725A.

The detection of FRB 180725A was announced online in a “Astronomer’s Telegram” post, which is intended to alert the astronomical community about possible new finds and encourage follow-up observations. The detection of FRB 180725A is very preliminary at this point, and more research is needed before its existence as an FRB can be confirmed.

As they stated in the Astronomers Telegram announcement, the radio was signal was detected on July 25th, at precisely 17:59:43.115 UTC (09:59.43.115 PST), and at a radio frequency of 400 MHz:

“The automated pipeline triggered the recording to disk of ~20 seconds of buffered raw intensity data around the time of the FRB. The event had an approximate width of 2 ms and was found at dispersion measure 716.6 pc/cm^3 with a signal-to-noise ratio S/N ~20.6 in one beam and 19.4 in a neighboring beam. The centers of these, approximately 0.5 deg wide and circular beams, were at RA, Dec = (06:13:54.7, +67:04:00.1; J2000) and RA, Dec = (06:12:53.1, +67:03:59.1; J2000).”

Research into Fast Radio Bursts is still in its infancy, being a little more than a decade old. The first ever to be detected was the famous Lorimer Burst, which was named after it discoverer – Duncan Lorimer, from West Virginia University. This burst lasted a mere five milliseconds and appeared to be coming from a location near the Large Magellanic Cloud, billions of light years away.

So far, the only FRB that has been found to be repeating was the mysterious signal known as FRB 121102, which was detected by the Arecibo radio telescope in Puerto Rico in 2012. The nature of this FRB was first noticed by a team of students from McGill University (led by then-PhD Student Paul Scholz), who sifted through the Arecibo data and determined that the initial burst was followed by 10 additional burst consistent with the original signal.

The NSF’s Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Arecibo detected 11 FRBs over the course of 2 months. Credit: NAIC

In addition to being the first time that this Canadian facility detected a possible FRB coming from space, this is the first time that an FRB has been detected below the 700 MHz range. However, as the CHIME team indicate in their announcement, other signals of equal intensity may have occurred in the past, which were simply not recognized as FRBs at the time.

“Additional FRBs have been found since FRB 180725A and some have flux at frequencies as low as 400 MHz,” they wrote. “These events have occurred during both the day and night and their arrival times are not correlated with known on-site activities or other known sources of terrestrial RFI (Radio Frequency Identification).”

As a result, this most-recent detection (if confirmed) could help astronomers shed some additional light on what causes FRBs, not to mention place some constraints on what frequencies they can occur at. Much like the study of gravitational waves, the field of study is new but rapidly growing, and made possible by the addition of cutting-edge instruments and facilities around the world.

Further Reading: CNET

Language in the Cosmos II: Hello There GJ273b

Ramfjordmoen Facility EISCAT

The ‘Language in the Cosmos’ symposium

Three times in October, 2017 researchers turned a powerful radar telescope near Tromsø, Norway towards an invisibly faint star in the constellation Canis Minor (the small dog) and beamed a coded message into space in an attempt to signal an alien civilization. This new attempt to find other intelligent life in the universe was reported in a presentation at the ‘Language in the Cosmos’ symposium held on May 26 in Los Angeles, California.

METI International sponsored the symposium. This organization was founded to promote messaging to extraterrestrial intelligence (METI) as a new approach to in the search for extraterrestrial intelligence (SETI). It also supports other aspects of SETI research and astrobiology. The symposium was held as part of the International Space Development Conference sponsored by the National Space Society. It brought together linguists and other scientists for a daylong program of 11 presentations. Dr. Sheri Wells-Jensen, who is a linguist from Bowling Green State University in Ohio, was the organizer.

METI International
METI International

This is the second of a two part series about METI International’s symposium. It will focus on a presentation given at the symposium by the president of METI International, Dr. Douglas Vakoch. He spoke about a project that hasn’t previously gotten much attention: the first attempt to send a message to a nearby potentially habitable exoplanet, GJ273b. Vakoch led the team that constructed the tutorial portion of the message.

Douglas Vakoch interstellar message
Dr. Douglas Vakoch, president of METI International. (Credit: Per Bifrost public domain)

Message to the stars

The modern search for extraterrestrial intelligence began in 1960. This is when astronomer Frank Drake used a radio telescope in West Virginia to listen for signals from two nearby stars. Astronomers have sporadically mounted increasingly sophisticated searches, when funding has been available. The largest current project is Breakthrough Listen, funded by billionaire Yuri Milner. Searches have been made for laser as well as radio signals. Researchers have also looked for the megastructures that advanced aliens might create in space near their stars. METI International advocates an entirely new approach in which messages are transmitted to nearby stars in hopes of eliciting a reply.

The project to send a message to GJ273b was a collaboration between artists and scientists. It was initiated by the organizers of the Sónar Music, Creativity, and Technology Festival. The Sónar festival has been held every year since 1994 in Barcelona, Spain. The organizers wanted to commemorate the 25th anniversary of the festival. To implement the project, the festival organizers sought the help of the Catalonia Institute of Space Studies (IEEC), and METI International.

Sónar music festival and interstellar message
The Sónar Music, Creativity, and Technology Festival of Barcelona, Spain was a sponsor of the message to GJ273b.

To transmit the message, the team turned to The European Incoherent Scatter Scientific Association (EISCAT) which operates a network of radio and radar telescopes in Finland, Norway, and Sweden. This network is primarily used to study interactions between the sun and Earth’s ionosphere and magnetic field from a vantage point north of the arctic circle. The message was transmitted from a 32 meter diameter steerable dish at EISCAT’s Ramfjordmoen facility near Tromso, Norway, with a peak power of 2 megawatts. It is the first interstellar message ever to be sent towards a known potentially habitable exoplanet.

The target system

The obscure star known by the catalogue designation GJ273 caught the attention of the Dutch-American astronomer Willem J. Luyten in 1935. Luyten was researching the motions of the star. The star caught his attention because it was moving through Earth’s sky at the surprising rate of 3.7 arc seconds per year. Later study showed that this fast apparent motion is due to the fact that GJ273 is one of the sun’s nearest neighbors, just 12.4 light years away. It is the 24th closest star to the sun. Because of Luyten’s discovery it is sometimes known as Luyten’s star.

Luyten’s star is a faint red dwarf star with only a quarter of the sun’s mass. It caught astronomers’ attention again in March 2017. That’s when an exoplanet, GJ273b, was discovered in it’s habitable zone. The habitable zone is the range of distances where a planet with an atmosphere similar to Earth’s would, theoretically, have a range of temperatures suitable to have liquid water on its surface. The planet is a super Earth, with a mass 2.89 times that of our homeworld. It orbits just 800,000 miles from its faint sun, which it circles every 18 Earth days.

habitable exoplanet interstellar message
Artist’s impression of a habitable exoplanet orbiting a red dwarf star. The habitability of the planets of red dwarf stars is conjectural (Credit ESO/M. Kornmesser public domain)

This exoplanet was chosen because of its proximity to Earth, and because it is visible in the sky from the transmitter’s northerly location. Because GJ273b is relatively nearby, and radio messages travel at the speed of light, a reply from the aliens could come as early as the middle of this century.

The Message

Comparisons with Voyager

The GJ273b transmission is not the first time a message intended for extraterrestrials has been sent into space. Probably the most familiar interstellar message is the one carried on board the Voyager 1 and 2 spacecraft. NASA launched these interplanetary robots in 1977. They traveled on trajectories that hurtled them into interstellar space after they completed their missions to explore the outer solar system.

The message carried aboard each Voyager spacecraft was encoded digitally on a phonographic record. It was largely pictorial, and attempted to give a comprehensive overview of humans and Earth. It also included a selection of music from various Earthly cultures. These spacecraft will take tens of thousands of years to reach the stars. So, no reply can be expected on a timescale relevant to our society.

In some ways the GJ273b message is very different from the Voyager message. Unlike the Voyager record, it isn’t pictorial and doesn’t attempt to give a comprehensive overview of humans and Earth. This is perhaps because, unlike the Voyager message, it is intended to initiate a dialog on a timescale of decades. It resembles the Voyager message in that it contains music from Earth, namely, music from the artists that performed at the Sónar music festival.

Saying hello

For the human reader, understanding the message is a bit more of a challenge than looking at the pictures encoded on the Voyager record. You can try your hand at decoding the message yourself, because the organizers posted the whole thing on their website. Be forewarned that if you continue reading here, there are spoilers (or helpful clues, depending on how you look at it).

The message consists of a string of binary digits—ones and zeros. These are represented in the signal by a shift between two slightly different radio frequencies. The ‘hello’ section is designed to catch the attention of alien listeners. It consists of a string of prime numbers (numbers divisible only by themselves and one). They are represented with binary digits like this:

01001100011100000111110000000000011111111111

The message continues the sequence up to 193. A signal like this almost certainly can’t be produced by natural processes, and can only be the designed handiwork of beings who know math.

The tutorial

After the ‘hello’ section comes the tutorial. This, and all the rest of the message, uses eight bit blocks of binary digits as the basis for its symbols. The tutorial begins by introducing number symbols by counting. It uses base two numbers like this:

10000000 (0) 10000001 (1) 10000010 (2) 10000011 (3)
10000100 (4) 10000101 (5) 10000110 (6) 10000111 (7)
10001000 (8) 10001001 (9) 10001010 (10)

The leading ‘1’ allows numbers to be distinguished from other 8 bit symbols that don’t represent numbers.

After counting, the tutorial introduces symbols for the operations of arithmetic by showing sample problems. Here’s a sampling of some of the symbols for math operations:

00000110 (+) 00000111 (-) 00001000 (×) 00001001 (÷)
00111100 (=)

The tutorial then proceeds to geometry using combinations of numbers and symbols to illustrate the Pythagorean theorem. It eventually progresses to sine waves, thereby describing the radio wave carrying the signal itself. Finally the tutorial describes the physics of sound waves and the relationships between musical notes.

Besides the numbers, the tutorial introduces 55 8-bit symbols in all. It provides the instructions that aliens would need to properly reproduce a series of digitally encoded musical selections from the Sónar Festival.

During its journey of 70 trillion miles, the message is sure to become corrupted with noise. To compensate, the tutorial was transmitted three times during each transmission, requiring a total of 33 minutes to transmit. The entire transmission was repeated on three separate days, October 16, 17, and 18, 2017. A second block of three transmissions was made on May 14, 15, and 16, 2018.

The music

Each transmission included a different selection of music, with the works of 38 different musicians included in all. You can hear recordings of all this music at the Sónar Calling GJ273b website.

The rationale behind the message

Current and past SETI projects conducted by astronomers here on Earth assume that advanced aliens would make things easy for newly emerging civilizations by establishing powerful beacons that would broadcast in all directions at all times. Thus, SETI searchers generally use the same sort of highly directional dish antennae often used for other research in radio astronomy. They listen to any one star for only a few minutes, searching each one in turn for the beacon.

Unlike the always-on beacons imagined as the objects of Earth’ SETI searches, the Sónar message was only transmitted for 33 minutes on each of three days, and on only two occasions. Vakoch admits that “our message would likely be undetected by a civilization on GJ273b using the same strategy” favored by beacon searching SETI researchers on Earth.

However, some researchers have called traditional SETI assumptions and strategy into question, and studies of alternative search technologies have already been conducted. Vakoch notes that “we humans already have the technological capacity, and need only the funding, to conduct an all-sky survey that would detect intermittent transmission like ours”.

A larger problem is that the message was directed at just one planet. Although GJ273b orbits within its star’s habitable zone, we really know little what that means for whether the planet is actually habitable, or whether it has life or intelligence. Earth itself has been habitable for billions of years. But it has only had a civilization capable of radio transmissions for a century.

Vakoch conceded that “The only way we will get a reply back from GJ273b is if the galaxy is chock full of intelligent life, and it is out there just waiting for us to take the initiative. More realistically, we may need to replicate this process with hundreds, thousands, or even millions of stars before we reach one with an advanced civilization that can detect our signal”. METI International aims to conduct a design study for such a large scale METI project in hopes that funding will materialize from governmental or other sources.

References and further reading:

Sónar Calling GJ273b

Cain F. (2013) How could we find aliens, Universe today.

Patton, P. E. (2018) Language in the Cosmos I: Is universal grammar really universal?, Universe Today.

Patton P. E. (2016) Alien Minds, I. Are extraterrestrial civilizations likely to evolve, II. Do aliens think big brains are sexy too?, III. The octopus’s garden and the country of the blind, Universe Today

Patton, P. E. (2015) Who speaks for Earth? The controversy over interstellar messaging, Universe Today.

Patton P. E. (2014) Communicating across the cosmos. Part 1: Shouting into the darkness, Part 2: Petabytes from the stars, Part 3: Bridging the vast gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Vakoch D. A. (2017) New keys to help extraterrestrials unlock our messages, Scientific American, Observations.

Vakoch D. A. (2011) Responsibility, capability and Active SETI: Policy, law, ethics, and communication with extraterrestrial intelligence, Acta Astronautica, 68:512-519

Vakoch D. A. (2010) An iconic approach to communicating musical concepts in interstellar messages, Acta Astronautica, 67:1406-1409

If We Receive a Message From Aliens, Should We Delete it Without Reading it?

Roughly half a century ago, Cornell astronomer Frank Drake conducted Project Ozma, the first systematic SETI survey at the National Radio Astronomy Observatory in Green Bank, West Virginia. Since that time, scientists have conducted multiple surveys in the hopes of find indications of “technosignatures” – i.e. evidence of technologically-advanced life (such as radio communications).

To put it plainly, if humanity were to receive a message from an extra-terrestrial civilization right now, it would be the single-greatest event in the history of civilization. But according to a new study, such a message could also pose a serious risk to humanity. Drawing on multiple possibilities that have been explored in detail, they consider how humanity could shield itself from malicious spam and viruses.

The study, titled “Interstellar communication. IX. Message decontamination is impossible“, recently appeared online. The study was conducted by Michael Hippke, a independent scientist from the Sonneberg Observatory in Germany; and John G. Learned, a professor with the High Energy Physics Group at the University of Hawaii. Together, they examine some of the foregone conclusions about SETI and what is more likely to be the case.

Frank Drake writing his famous equation on a white board. Credit: SETI.org

To be fair, the notion that an extra-terrestrial civilization could pose a threat to humanity is not just a well-worn science fiction trope. For decades, scientists have treated it as a distinct possibility and considered whether or not the risks outweigh the possible benefits. As a result, some theorists have suggested that humans should not engage in SETI at all, or that we should take measures to hide our planet.

As Professor Learned told Universe Today via email, there has never been a consensus among SETI researchers about whether or not ETI would be benevolent:

“There is no compelling reason at all to assume benevolence (for example that ETI are wise and kind due to their ancient civilization’s experience). I find much more compelling the analogy to what we know from our history… Is there any society anywhere which has had a good experience after meeting up with a technologically advanced invader? Of course it would go either way, but I think often of the movie Alien… a credible notion it seems to me.”

In addition, assuming that an alien message could pose a threat to humanity makes practical sense. Given the sheer size of the Universe and the limitations imposed by Special Relativity (i.e. no known means of FTL), it would always be cheaper and easier to send a malicious message to eradicate a civilization compared to an invasion fleet. As a result, Hippke and Learned advise that SETI signals be vetted and/or “decontaminated” beforehand.

The Arecibo Radio Telescope in Puerto Rico was the site of NASA’s High Resolution Microwave Survey, a search for extraterrestrial radio messages. Credit: US NSF

In terms of how a SETI signal could constitute a threat, the researchers outline a number of possibilities. Beyond the likelihood that a message could convey misinformation designed to cause a panic or self-destructive behavior, there is also the possibility that it could contain viruses or other embedded technical issues (i.e. the format could cause our computers to crash).

They also note that, when it comes to SETI, a major complication arises from the fact that no message is likely to received in only one place (thus making containment possible). This is unlikely because of the “Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence”, which was adopted by the International Academy of Astronautics in 1989 (and revised in 2010).

Article 6 of this declaration states the following:

“The discovery should be confirmed and monitored and any data bearing on the evidence of extraterrestrial intelligence should be recorded and stored permanently to the greatest extent feasible and practicable, in a form that will make it available for further analysis and interpretation. These recordings should be made available to the international institutions listed above and to members of the scientific community for further objective analysis and interpretation.”

Voyager included a golden record with images and sounds of Earthly life recorded on it… just in case. Credit: NASA

As such, a message that is confirmed to have originated from an ETI would most likely be made available to the entire scientific community before it could be deemed to be threatening in nature. Even if there was only one recipient, and they attempted to keep the message under strict lock and key, it’s a safe bet that other parties would find a way to access it before long.

The question naturally arises then, what can be done? One possibility that Hippke and Learned suggest is to take a analog approach to interpreting these messages, which they illustrate using the 2017 SETI Decrypt Challenge as an example. This challenge, which was issued by René Heller of the Max Planck Institute for Solar System Research, consisted of a sequence of about two million binary digits and related information being posted to social media.

In addition to being a fascinating exercise that gave the public a taste of what SETI research means, the challenge also sough to address some central questions when it came to communicating with an ETI. Foremost among these was whether or not humanity would be bale to understand a message from an alien civilization, and how we might be able to make a message comprehensible (if we sent one first). As they state:

“As an example, the message from the “SETI Decrypt Challenge” (Heller 2017) was a stream of 1,902,341 bits, which is the product of prime numbers. Like the Arecibo message (Staff At The National Astronomy Ionosphere Center 1975) and Evpatoria’s “Cosmic Calls” (Shuch 2011), the bits represent the X/Y black/white pixel map of an image. When this is understood, further analysis could be done off-line by printing on paper. Any harm would then come from the meaning of the message, and not from embedded viruses or other technical issues.”

The Wow! signal represented as “6EQUJ5”. Credit: Big Ear Radio Observatory/NAAPO

However, where messages are made up of complex codes or even a self-contained AI, the need for sophisticated computers may be unavoidable. In this case, the authors explore another popular recommendation, which is the use on quarantined machines to conduct the analysis – i.e. a message prison. Unfortunately, they also acknowledge that no prison would be 100% effective and containment could eventually fail.

“This scenario resembles the Oracle-AI, or AI box, of an isolated computer system where a possibly dangerous AI is ‘imprisoned’ with only minimalist communication channels,” they write. “Current research indicates that even well-designed boxes are useless, and a sufficiently intelligent AI will be able to persuade or trick its human keepers into releasing it.”

In the end, it appears that the only real solution is to maintain a vigilant attitude and ensure that any messages we send are as benign as possible. As Hippke summarized: “I think it’s overwhelmingly likely that a message will be positive, but you can not be sure. Would you take a 1% chance of death for a 99% chance of a cure for all diseases? One learning from our paper is how to design own message, in case we decide to send any: Keep it simple, don’t send computer code.”

Basically, when it comes to the search for extra-terrestrial intelligence, the rules of internet safety may apply. If we begin to receive messages, we shouldn’t trust those that come with big attachments and send any suspicious looking ones to our spam folder. Oh, and if a sender is promising the cure for all known diseases, or claims to be the deposed monarch of Andromeda in need of some cash, we should just hit delete!

Further Reading: arXiv

The Most Detailed Map Ever Made of the Milky Way in Radio Waves

The FUGIN project used the 45 meter Nobeyama radio telescope in Japan to produce the most detailed radio wave map yet of the Milky Way. Image: NAOJ/NASA/JPL-Caltech

A Japanese telescope has produced our most detailed radio wave image yet of the Milky Way galaxy. Over a 3-year time period, the Nobeyama 45 meter telescope observed the Milky Way for 1100 hours to produce the map. The image is part of a project called FUGIN (FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope.) The multi-institutional research group behind FUGIN explained the project in the Publications of the Astronomical Society of Japan and at arXiv.

The Nobeyama 45 meter telescope is located at the Nobeyama Radio Observatory, near Minamimaki, Japan. The telescope has been in operation there since 1982, and has made many contributions to millimeter-wave radio astronomy in its life. This map was made using the new FOREST receiver installed on the telescope.

When we look up at the Milky Way, an abundance of stars and gas and dust is visible. But there are also dark spots, which look like voids. But they’re not voids; they’re cold clouds of molecular gas that don’t emit visible light. To see what’s happening in these dark clouds requires radio telescopes like the Nobeyama.

The Nobeyama 45m radio telescope at the Nobeyama Radio Observatory in Japan. Image:NAOJ
The Nobeyama 45m radio telescope at the Nobeyama Radio Observatory in Japan. Image:NAOJ

The Nobeyama was the largest millimeter-wave radio telescope in the world when it began operation, and it has always had great resolution. But the new FOREST receiver has improved the telescope’s spatial resolution ten-fold. The increased power of the new receiver allowed astronomers to create this new map.

The new map covers an area of the night sky as wide as 520 full Moons. The detail of this new map will allow astronomers to study both large-scale and small-scale structures in new detail. FUGIN will provide new data on large structures like the spiral arms—and even the entire Milky Way itself—down to smaller structures like individual molecular cloud cores.

FUGIN is one of the legacy projects for the Nobeyama. These projects are designed to collect fundamental data for next-generation studies. To collect this data, FUGIN observed an area covering 130 square degrees, which is over 80% of the area between galactic latitudes -1 and +1 degrees and galactic longitudes from 10 to 50 degrees and from 198 to 236 degrees. Basically, the map tried to cover the 1st and 3rd quadrants of the galaxy, to capture the spiral arms, bar structure, and the molecular gas ring.

Starscape photograph taken at Nobeyama Radio Observatory by Norikazu Okabe. The FUGIN observation region (l=10-50 deg) is marked. Credit: National Astronomical Observatory of Japan
Starscape photograph taken at Nobeyama Radio Observatory by Norikazu Okabe. The FUGIN observation region (l=10-50 deg) is marked. Credit: National Astronomical Observatory of Japan

The aim of FUGIN is to investigate physical properties of diffuse and dense molecular gas in the galaxy. It does this by simultaneously gathering data on three carbon dioxide isotopes: 2CO, 13CO, and 18CO. Researchers were able to study the distribution and the motion of the gas, and also the physical characteristics like temperature and density. And the studying has already paid off.

FUGIN has already revealed things previously hidden. They include entangled filaments that weren’t obvious in previous surveys, as well as both wide-field and detailed structures of molecular clouds. Large scale kinematics of molecular gas such as spiral arms were also observed.

An artist’s image showing the major features of the Milky Way galaxy. Credit: NASA/JPL-Caltech, ESO, J. Hurt

But the main purpose is to provide a rich data-set for future work by other telescopes. These include other radio telescopes like ALMA, but also telescopes operating in the infrared and other wavelengths. This will begin once the FUGIN data is released in June, 2018.

Millimeter wave radio astronomy is powerful because it can “see” things in space that other telescopes can’t. It’s especially useful for studying the large, cold gas clouds where stars form. These clouds are as cold as -262C (-440F.) At temperatures that low, optical scopes can’t see them, unless a bright star is shining behind them.

Even at these extremely low temperatures, there are chemical reactions occurring. This produces molecules like carbon monoxide, which was a focus of the FUGIN project, but also others like formaldehyde, ethyl alcohol, and methyl alcohol. These molecules emit radio waves in the millimeter range, which radio telescopes like the Nobeyama can detect.

The top-level purpose of the FUGIN project, according to the team behind the project, is to “provide crucial information about the transition from atomic gas to molecular gas, formation of molecular clouds and dense gas, interaction between star-forming regions and interstellar gas, and so on. We will also investigate the variation of physical properties and internal structures of molecular clouds in various environments, such as arm/interarm and bar, and evolutionary stage, for example, measured by star-forming activity.”

This new map from the Nobeyama holds a lot of promise. A rich data-set like this will be an important piece of the galactic puzzle for years to come. The details revealed in the map will help astronomers tease out more detail on the structures of gas clouds, how they interact with other structures, and how stars form from these clouds.

Astronomers Start Mapping the Structure of the Far Side of the Milky Way

Since the 18th century, astronomers have been aware that our Solar System is embedded in a vast disk of stars and gas known as the Milky Way Galaxy. Since that time, the greatest scientific minds have been attempting to obtain accurate distance measurements in order to determine just how large the Milky Way is. This has been no easy task, since the fact that we are embedded in our galaxy’s disk means that we cannot view it head-on.

But thanks to a time-tested technique called trigonometric parallax, a team of astronomers from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, and the Harvard-Smithsonian Center for Astrophysics (CfA) were recently able to directly measure the distance to the opposite side of the Milky Way Galaxy. Aside from being an historic first, this feat has nearly doubled the previous record for distance measurements within our galaxy.

The study which described this accomplishment, titled “Mapping Spiral Structure on the far side of the Milky Way“, recently appeared in the journal Science. Led by Alberto Sanna, a researcher from the Max Planck Institute for Radio Astronomy, the team consulted data from the National Radio Astronomy Observatory’s Very Long Baseline Array (VLBA) to determine the distance to a star-forming region on the other side of our galaxy.

Artist’s view of the Milky Way with the location of the Sun and the star forming region at the opposite side in the Scutum-Centaurus spiral arm. Credit: Bill Saxton, NRAO/AUI/NSF; Robert Hurt, NASA.

To do this, the team relied on a technique first applied by Freidrich Wilhelm Bessel in 1838 to measure the distance to the star 61 Cygni. Known as trigonometric parallax, this technique involves viewing an object from opposite sides of the Earth’s orbit around the Sun, and then measuring the angle of the object’s apparent shift in position. In this way, astronomers are able to use simple trigonometry to calculate the distance to that object.

In short, the smaller the measured angle, the greater the distance to the object. These measurements were performed using data from the Bar and Spiral Structure Legacy (BeSSeL) Survey, which was named in honor of Freidrich Wilhelm Bessel. But whereas Bessel and his contemporaries were forced to measure parallax using basic instruments, the VLBA has ten dish antennas distributed across North America, Hawaii, and the Caribbean.

With such an array at its disposal, the VLBA is capable of measuring parallaxes with one thousand times the accuracy of those performed by astronomers in Bessel’s time. And rather than being confined to nearby star systems, the VLBA is capable of measuring the minuscule angles associated with vast cosmological distances. As Sanna explained in a recent MPIfR press release:

“Using the VLBA, we now can accurately map the whole extent of our Galaxy. Most of the stars and gas in our Galaxy are within this newly-measured distance from the Sun. With the VLBA, we now have the capability to measure enough distances to accurately trace the Galaxy’s spiral arms and learn their true shapes.”

With parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO/AUI/NSF.

The VLBA observations, which were conducted in 2014 and 2015, measured the distance to the star-forming region known as G007.47+00.05. Like all star-forming regions, this one contains molecules of water and methanol, which act as natural amplifiers of radio signals. This results in masers (the radio-wave equivalent of lasers), an effect that makes the radio signals appear bright and readily observable with radio telescopes.

This particular region is located over 66,000 light years from Earth and at on opposite side of the Milky Way, relative to our Solar System. The previous record for a parallax measurement was about 36,000 light-years, roughly 11,000 light years farther than the distance between our Solar System and the center of our galaxy. As Sanna explained, this accomplishment in radio astronomy will enable surveys that reach much farther than previous ones:

“Most of the stars and gas in our Galaxy are within this newly-measured distance from the Sun. With the VLBA, we now have the capability to measure enough distances to accurately trace the Galaxy’s spiral arms and learn their true shapes.”

Hundreds of star-forming regions exist within the Milky Way. But as Karl Menten – a member of the MPIfR and a co-author on the study – explained, this study was significant because of where this one is located. “So we have plenty of ‘mileposts’ to use for our mapping project,” he said. “But this one is special: Looking all the way through the Milky Way, past its center, way out into the other side.”

The band of light (the Milky Way) that is visible in the night sky, showing the stellar disk of our galaxy. Credit: Bob King

In the coming years, Sanna and his colleagues hope to conduct additional observations of G007.47+00.05 and other distant star-forming regions of the Milky Way. Ultimately, the goal is to gain a complete understanding of our galaxy, one that is so accurate that scientists will be able to finally place precise constraints on its size, mass, and its total number of stars.

With the necessary tools now in hand, Sanna and his team even estimate that a complete picture of the Milky Way could be available in about ten years time. Imagine that! Future generations will be able to study the Milky Way with the same ease as one that is located nearby, and which they can view edge-on. At long last, all those artist’s impression of our Milky Way will be to scale!

Further Reading: MPIfR, Science

New Study Says a Fast Radio Burst Happens Every Second in the Universe

When astronomers first noted the detection of a Fast Radio Burst (FRB) in 2007 (aka. the Lorimer Burst), they were both astounded and intrigued. This high-energy burst of radio pulses, which lasted only a few milliseconds, appeared to be coming from outside of our galaxy. Since that time, astronomers have found evidence of many FRBs in previously-recorded data, and are still speculating as to what causes them.

Thanks to subsequent discoveries and research, astronomers now know that FRBs are far more common than previously thought. In fact, according to a new study by a team of researchers from the Harvard-Smithsonian Center for Astrophysics (CfA), FRBs may occur once every second within the observable Universe. If true, FRBs could be a powerful tool for researching the origins and evolution of the cosmos.

The study, titled “A Fast Radio Burst Occurs Every Second throughout the Observable Universe“, recently appeared in The Astrophysical Journal Letters. The study was led by Anastasia Fialkov, a postdoc researcher and Fellow at the CfA’s Institute for Theory and Computation (ITC). She was joined by Professor Abraham Loeb, the director of the ITC and the Frank B. Baird, Jr. Professor of Science at Harvard.

As noted, FRBs have remained something of a mystery since they were first discovered. Not only do their causes remain unknown, but much about their true nature is still not understood. As Dr. Fialkov told Universe Today via email:

“FRBs (or fast radio bursts) are astrophysical signals of an undetermined nature. The observed bursts are short (or millisecond duration), bright pulses in the radio part of the electromagnetic spectrum (at GHz frequencies). Only 24 bursts have been observed so far and we still do not know for sure which physical processes trigger them. The most plausible explanation is that they are launched by rotating magnetized neutron stars. However, this theory is to be confirmed.”

For the sake of their study, Fialkov and Loeb relied on observations made by multiple telescopes of the repeating fast radio burst known as FRB 121102. This FRB was first observed in 2012 by researchers using the Arecibo radio telescope in Puerto Rico, and has since been confirmed to be coming from a galaxy located 3 billion light years away in the direction of the Auriga constellation.

Since it was discovered, additional bursts have been detected coming from its location, making FRB 121102 the only known example of a repeating FRB. This repetitive nature has also allowed astronomers to conduct more detailed studies of it than any other FRB. As Prof. Loeb told Universe Today via email, these and other reasons made it an ideal target for their study:

“FRB 121102 is the only FRB for which a host galaxy and a distance were identified. It is also the only repeating FRB source from which we detected hundreds of FRBs by now. The radio spectrum of its FRBs is centered on a characteristic frequency and not covering a very broad band. This has important implications for the detectability of such FRBs, because in order to find them the radio observatory needs to be tuned to their frequency.”

Image of the sky where the radio burst FRB 121102 was found, in the constellation Auriga. You can see its location with a green circle. At left is supernova remnant S147 and at right, a star formation area called IC 410. Credit: Rogelio Bernal Andreo (DeepSkyColors.com)

Based on what is known about FRB 121102, Fialkov and Loeb conducted a series of calculations that assumed that it’s behavior was representative of all FRBs. They then projected how many FRBs would exist across the entire sky and determined that within the observable Universe, a FRB would likely be taking place once every second. As Dr. Fialkov explained:

“Assuming that FRBs are produced by galaxies of a particular type (e.g., similar to FRB 121102) we can calculate how many FRBs have to be produced by each galaxy to explain the existing observations (i.e., 2000 per sky per day). With this number in mind we can infer the production rate for the entire population of galaxies. This calculation shows that an FRB occurs every second when accounting for all the faint events.”

While the exact nature and origins of FRBs are still unknown – suggestions include rotating neutron stars and even alien intelligence! – Fialkov and Loeb indicate that they could be used to study the structure and evolution of the Universe. If indeed they occur with such regular frequency throughout the cosmos, then more distant sources could act as probes which astronomers would then rely on to plumb the depths of space.

For instance, over vast cosmic distances, there is a significant amount of intervening material that makes it difficult for astronomers to study the Cosmic Microwave Background (CMB) – the leftover radiation from the Big Bang. Studies of this intervening material could lead to a new estimates of just how dense space is – i.e. how much of it is composed of ordinary matter, dark matter, and dark energy – and how rapidly it is expanding.

Gemini composite image of the field around FRB 121102, the only repeating FRB discovered so far. Credit: Gemini Observatory/AURA/NSF/NRC

And as Prof. Loeb indicated, FRBs could also be used to explore enduring cosmlogical questions, like how the “Dark Age” of the Universe ended:

“FRBs can be used to measure the column of free electrons towards their source. This can be used to measure the density of ordinary matter between galaxies in the present-day universe. In addition, FRBs at early cosmic times can be used to find out when the ultraviolet light from the first stars broke up the primordial atoms of hydrogen left over from the Big Bang into their constituent electrons and protons.”

The “Dark Age”, which occurred between 380,000 and 150 million years after the Big Bang, was characterized by a “fog” of hydrogen atoms interacting with photons. As a result of this, the radiation of this period is undetectable by our current instruments. At present, scientists are still attempting to resolve how the Universe made the transition between these “Dark Ages” and subsequent epochs when the Universe was filled with light.

This period of “reionization”, which took place 150 million to 1 billion years after the Big Bang, was when the first stars and quasars formed. It is generally believed that UV light from the first stars in the Universe traveled outwards to ionize the hydrogen gas (thus clearing the fog). A recent study also suggested that black holes that existed in the early Universe created the necessary “winds” that allowed this ionizing radiation to escape.

To this end, FRBs could be used to probe into this early period of the Universe and determine what broke down this “fog” and allowed light to escape. Studying very distant FRBs could allow scientists to study where, when and how this process of “reionization” occurred. Looking ahead, Fialkov and Loeb explained how future radio telescopes will be able to discover many FRBs.

The planned Square Kilometer Array will be the world’s largest radio telescope when it begins operations in 2018. Credit: SKA

“Future radio observatories, like the Square Kilometer Array, will be sensitive enough to detect FRBs from the first generation of galaxies at the edge of the observable universe,” said Prof. Loeb. “Our work provides the first estimate of the number and properties of the first flashes of radio waves that lit up in the infant universe.”

And then there’s the Canadian Hydrogen Intensity Mapping Experiment (CHIME) at the at the Dominion Radio Astrophysical Observatory in British Columbia, which recently began operating. These and other instruments will serve as powerful tools for detecting FRBs, which in turn could be used to view previously unseen regions of time and space, and unlock some of the deepest cosmological mysteries.

“[W]e find that a next generation telescope (with a much better sensitivity than the existing ones) is expected to see many more FRBs than what is observed today,” said Dr. Fialkov. “This would allow to characterize the population of FRBs and identify their origin. Understanding the nature of FRBs will be a major breakthrough. Once the properties of these sources are known, FRBs can be used as cosmic beacons to explore the Universe. One application is to study the history of reionization (cosmic phase transition when the inter-galactic gas was ionized by stars).”

It is an inspired thought, using natural cosmic phenomena as research tools. In that respect, using FRBs to probe the most distant objects in space (and as far back in time as we can) is kind of like using quasars as navigational beacons. In the end, advancing our knowledge of the Universe allows us to explore more of it.

Further Reading: CfA, Astrophysical Journal Letters

Strange Radio Signals Detected from a Nearby Star

Astronomers have been listening to radio waves from space for decades. In addition to being a proven means of studying stars, galaxies, quasars and other celestial objects, radio astronomy is one of the main ways in which scientists have searched for signs of extra-terrestrial intelligence (ETI). And while nothing definitive has been found to date, there have been a number of incidents that have raised hopes of finding an “alien signal”.

In the most recent case, scientists from the Arecido Observatory recently announced the detection of a strange radio signal coming from Ross 128 – a red dwarf star system located just 11 light-years from Earth. As always, this has fueled speculation that the signal could be evidence of an extra-terrestrial civilization, while the scientific community has urged the public not to get their hopes up.

The discovery was part of a campaign being conducted by Abel Méndez – the director of the Planetary Habitability Laboratory (PHL) in Peurto Rico – and Jorge Zuluaga of the Faculty of Exact and Natural Sciences at the University of Antioquia, Colombia. Inspired by the recent discoveries around Proxima Centauri and TRAPPIST-1, the GJ 436 campaign relied on data from Arecibo Observatory to look for signs of exoplanets around nearby red dwarf stars.

Arecibo Observatory, the world’s biggest single dish radio telescope, was and is still being used to image comet 45P/H-M-P. Courtesy of the NAIC – Arecibo Observatory, a facility of the NSF

In the course of looking at data from stars systems like Gliese 436, Ross 128, Wolf 359, HD 95735, BD +202465, V* RY Sex, and K2-18 – which was gathered between April and May of 2017 – they noticed something rather interesting. Basically, the data indicated that an unexplained radio signal was coming from Ross 128. As Dr. Abel Mendez described in a blog post on the PHL website: 

“Two weeks after these observations, we realized that there were some very peculiar signals in the 10-minute dynamic spectrum that we obtained from Ross 128 (GJ 447), observed May 12 at 8:53 PM AST (2017/05/13 00:53:55 UTC). The signals consisted of broadband quasi-periodic non-polarized pulses with very strong dispersion-like features. We believe that the signals are not local radio frequency interferences (RFI) since they are unique to Ross 128 and observations of other stars immediately before and after did not show anything similar.”

After first noticing this signal on Saturday, May 13th at 8:53 p.m., scientists from the Arecibo Observatory and astronomers from the Search for Extra-Terrestrial Intelligence (SETI) Institute teamed up to conduct a follow-up study of the star. This was performed on Sunday, July 16th, using SETI’s Allen Telescope Array and the National Radio Astronomy Observatory‘s (NRAO) Green Bank Telescope.

They also conducted observations of Barnard’s star on that same day to see if they could note similar behavior coming from this star system. This was done in collaboration with the Red Dots project, a European Southern Observatory (ESO) campaign that is also committed to finding exoplanets around red dwarf stars. This program is the successor to the ESO’s Pale Red Dot campaign, which was responsible for discovering Proxima b last summer.

Images of the star systems examined by the GJ 436 Campaign. Credit: PHL/Abel Méndez 

As of Monday night (July 17th), Méndez updated his PHL blog post to announced that with the help of SETI Berkeley with the Green Bank Telescope, that they had successfully observed Ross 128 for the second time. The data from these observatories is currently being collected and processed, and the results are expected to be announced by the end of the week.

In the meantime, scientists have come up with several possible explanations for what might be causing the signal. As Méndez indicated, there are three major possibilities that he and his colleagues are considering:

“[T]hey could be (1) emissions from Ross 128 similar to Type II solar flares, (2) emissions from another object in the field of view of Ross 128, or just (3) burst from a high orbit satellite since low orbit satellites are quick to move out of the field of view. The signals are probably too dim for other radio telescopes in the world and FAST is currently under calibration.”

Unfortunately, each of these possibilities have their own drawbacks. In the case of a Type II solar flare, these are known to occur at much lower frequencies, and the dispersion of this signal appears to be inconsistent with this kind of activity. In the case of it possibly coming from another object, no objects (planets or satellites) have been detected within Ross 128’s field of view to date, thus making this unlikely as well.

The stars currently being examined as part of the GJ 436 campaign. Credit: PHL/Abel Méndez

Hence, the team has something of a mystery on their hands, and hopes that further observations will allow them to place further constrains on what the cause of the signal could be. “[W]e might clarify soon the nature of its radio emissions, but there are no guarantees,” wrote Méndez. “Results from our observations will be presented later that week. I have a Piña Colada ready to celebrate if the signals result to be astronomical in nature.”

And just to be fair, Méndez also addressed the possibility that the signal could be artificial in nature – i.e. evidence of an alien civilization. “In case you are wondering,” he wrote, “the recurrent aliens hypothesis is at the bottom of many other better explanations.” Sorry, alien-hunters. Like the rest of us, you’ll just have to wait and see what can be made of this signal.

Further Reading: AFP, PHL

The Sun Probably Lost a Binary Twin Billions of Years Ago

For us Earthlings, life under a single Sun is just the way it is. But with the development of modern astronomy, we’ve become aware of the fact that the Universe is filled with binary and even triple star systems. Hence, if life does exist on planets beyond our Solar System, much of it could be accustomed to growing up under two or even three suns. For centuries, astronomers have wondered why this difference exists and how star systems came to be.

Whereas some astronomers argue that individual stars formed and acquired companions over time, others have suggested that systems began with multiple stars and lost their companions over time. According to a new study by a team from UC Berkeley and the Harvard-Smithsonian Center for Astrophysics (CfA), it appears that the Solar System (and other Sun-like stars) may have started out as binary system billions of years ago.

This study, titled “Embedded Binaries and Their Dense Cores“, was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society. In it, Sarah I. Sadavoy – a radio astronomer from the Max Planck Institute for Astronomy and the CfA – and Steven W. Stahler (a theoretical physicist from UC Berkeley) explain how a radio surveys of a star nursery led them to conclude that most Sun-like stars began as binaries.

The dark molecular cloud, Barnard 68, is a stellar nursery that can only be studied using radio astronomy. Credit: FORS Team, 8.2-meter VLT Antu, ESO

They began by examining the results of the first radio survey of the giant molecular cloud located about 600 light-years from Earth in the Perseus constellation – aka. the Perseus Molecular Cloud. This survey, known as the VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey, relied the Very Large Array in New Mexico and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to conduct the first survey of the young stars (<4 million years old) in this star-forming region.

For several decades, astronomers have known that stars are born inside “stellar nurseries”, which are the dense cores that exist within immense clouds of dust and cold, molecular hydrogen. These clouds look like holes in the star field when viewed through an optical telescope, thanks to all the dust grains that obscure light coming from the stars forming within them and from background stars.

Radio surveys are the only way to probe these star-forming regions, since the dust grains emit radio transmissions and also do not block them. For years, Stahler has been attempting to get radio astronomers to examine molecular clouds in the hope of gathering information on the formation of young stars inside them. To this end, he approached Sarah Sadavoy – a member of the VANDAM team – and proposed a collaboration.

The two began their work together by conducting new observations of both single and binary stars within the dense core regions of the Perseus cloud. As Sadavoy explained in a Berkeley News press release, the duo were looking for clues as to whether young stars formed as individuals or in pairs:

“The idea that many stars form with a companion has been suggested before, but the question is: how many? Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”

Infrared image from the Hubble Space Telescope, showing a bright, fan-shaped object (lower right quadrant) thought to be a binary star that emits light pulses as the two stars interact. Credit: NASA/ESA/ J. Muzerolle (STScI)

Their observations of the Perseus cloud revealed a series of Class 0 and Class I stars – those that are <500,000 old and 500,000 to 1 million years old, respectively – that were surrounded by egg-shaped cocoons. These observations were then combined with the results from VANDAM and other surveys of star forming regions – including the Gould Belt Survey and data gathered by SCUBA-2 instrument on the James Clerk Maxwell Telescope in Hawaii.

From this, they created a census of stars within the Perseus cloud, which included 55 young stars in 24 multiple-star systems (all but five of them binary) and 45 single-star systems. What they observed was that all of the widely separated binary systems – separated by more than 500 AU – were very young systems containing two Class 0 stars  that tended to be aligned with the long axis of their egg-shaped dense cores.

Meanwhile, the slightly older Class I binary stars were closer together (separated by about 200 AU) and did not have the same tendency as far as their alignment was concerned. From this, the study’s authors began mathematically modelling multiple scenarios to explain this distribution, and concluded that all stars with masses comparable to our Sun start off as wide Class 0 binaries. They further concluded that 60% of these split up over time while the rest shrink to form tight binaries.

“As the egg contracts, the densest part of the egg will be toward the middle, and that forms two concentrations of density along the middle axis,” said Stahler. “These centers of higher density at some point collapse in on themselves because of their self-gravity to form Class 0 stars. “Within our picture, single low-mass, sunlike stars are not primordial. They are the result of the breakup of binaries. ”

The two brightest stars of the Centaurus constellation, the binary star system of Alpha Centauri. Credit: Wikipedia Commons/Skatebiker

Findings of this nature have never before been seen or tested. They also imply that each dense core within a stellar nursery (i.e. the egg-shaped cocoons, which typically comprise a few solar masses) converts twice as much material into stars as was previously thought. As Stahler remarked:

“The key here is that no one looked before in a systematic way at the relation of real young stars to the clouds that spawn them. Our work is a step forward in understanding both how binaries form and also the role that binaries play in early stellar evolution. We now believe that most stars, which are quite similar to our own sun, form as binaries. I think we have the strongest evidence to date for such an assertion.”

This new data could also be the start of a new trend, where astronomers rely on radio telescopes to examine dense star-forming regions with the hopes of witnessing more in the way of stellar formations. With the recent upgrades to the VLA and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the ongoing data provided by the SCUBA-2 survey in Hawaii, these studies may be coming sooner other than later.

Another interesting implication of the study has to do with something known as the “Nemesis hypothesis”. In the past, astronomers have conjectured that a companion star named “Nemesis” existed within our Solar System. This star was so-named because the theory held that it was responsible for kicking the asteroid which caused the extinction of the dinosaurs into Earth’s orbit. Alas, all attempts to find Nemesis ended in failure.

Artist’s impression of the binary star system of Sirius, a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)

As Steven Stahler indicated, these findings could be interpreted as a new take on the Nemesis theory:

“We are saying, yes, there probably was a Nemesis, a long time ago. We ran a series of statistical models to see if we could account for the relative populations of young single stars and binaries of all separations in the Perseus molecular cloud, and the only model that could reproduce the data was one in which all stars form initially as wide binaries. These systems then either shrink or break apart within a million years.”

So while their results do not point towards a star being around for the extinction of the dinosaurs, it is possible (and even highly plausible) that billions of years ago, the Solar planets orbited around two stars. One can only imagine what implications this could have for the early history of the Solar System and how it might have affected planetary formation. But that will be the subject of future studies, no doubt!

Further Reading: Berkeley News, arXiv

The WOW Signal Probably Didn’t Come from Aliens, or Comets as You Recently Heard

On August 15th, 1977, astronomers using the Big Ear radio telescope at Ohio State University detected a 72-second radio signal coming from space. This powerful signal, which quickly earned the nickname the “Wow! signal”, appeared to be coming from the direction of the Sagittarius Constellation, and some went so far as to suggest that it might be extra-terrestrial in origin.

Since then, the Wow! signal has been an ongoing source of controversy among SETI researchers and astronomers. While some have maintained that it is evidence of extra-terrestrial intelligence (ETI), others have sought to find a natural explanation for it. And thanks a team of researchers from the Center of Planetary Science (CPS), a natural explanation may finally have been found.

In the past, possible explanations have ranged from asteroids and exoplanets to stars and even signals from Earth – but these have all been ruled out. And then in 2016, the Center for Planetary Science – a Florida-based non-profit scientific and astronomical organization – proposed a hypothesis arguing that a comet and/or its hydrogen cloud could be the cause.

This was based on the fact that the Wow! signal was transmitting at a frequency of 1,420 MHz, which happens to be the same frequency as hydrogen. This explanation was also appealing because the movement of the comet served as a possible explanation for why the signal has not been detected since. To validate this hypothesis, the CPS team reportedly conducted 200 observations using a 10-meter radio telescope.

This telescope, they claim, was equipped with a spectrometer and a custom feed horn designed to collect a radio signal centered at 1420.25 MHz. Between Nov. 27th, 2016, and Feb. 24th, 2017, they monitored the area of space where the Wow! signal was detected, and found that a pair of Solar comets (which had not been discovered in 1977) happened to conform to their observations, and could therefore have been the source.

Spectra obtained from these comets – P/2008 Y2(Gibbs) and 266/P Christensen – indicated that they were emitting a radio frequency that was consistent with the Wow! signal. As Antonio Paris (a professor at the CPS), described in a recent paper that appeared in the Journal of the Washington Academy of Sciences:

“The investigation discovered that comet 266/P Christensen emitted a radio signal at 1420.25 MHz. All radio emissions detected were within 1° (60 arcminutes) of the known celestial coordinates of the comet as it transited the neighborhood of the ‘Wow!’ Signal. During observations of the comet, a series of experiments determined that known celestial sources at 1420 MHz (i.e., pulsars and/or active galactic nuclei) were not within 15° of comet 266/P Christensen.”

The Wow! signal represented as “6EQUJ5”. Credit: Big Ear Radio Observatory/NAAPO

The team also examined three other comets to see if they emitted similar radio signals. These comets – P/2013 EW90 (Tenagra), P/2016 J1-A (PANSTARRS), and 237P/LINEAR – were selected randomly from the JPL Small Bodies database, and were confirmed to emit a radio signal at 1420 MHz. Therefore, the results of this investigation conclude that the 1977 “Wow!” Signal was a natural phenomenon from a Solar System body.

However, not everyone is convinced. In response to the paper, Yvette Cendes – a PhD student with the Dunlap Institute at the University of Toronto – wrote a lengthy response on reddit as to why it fails to properly address the Wow! signal. For starters, she cites how the research team measured the signal strength in terms of decibels:

“I have never, ever, EVER used dB in a paper, nor have I ever read a paper in radio astronomy that measured signal strength in dB (except perhaps in the context of an instrumentation paper describing the systems of a radio telescope, i.e. not science but engineering.) We use a different unit in astronomy for flux density, the Jansky (Jy), where 1 Jy= ?230 dBm/(m2·Hz). (dB is a log scale, and Janskys are not.)”

Another point of criticism is the lack of detail in the paper, which would make reproducing the results very difficult – a central requirement where scientific research is concerned. Specifically, they do not indicate where the 10-meter radio telescope they used came from – i.e. which observatory of facility it belonged to, or even if it belonged to one at all – and are rather vague about its technical specification.

Spectra obtained from an area in the direction of the Sagittarius constellation. Credit: The Center for Planetary Science

Last, but not least, there is the matter of the environment in which the observations took place, which are not specified. This is also very important for radio astronomy, as it raised the issue of interference. As Cendes put it:

“This might sound pedantic, but this is insanely important in radio astronomy, where most signals we ever search for are a tiny fraction of the man-made ones, which can be millions of times brighter than an astronomical signal. (A cell phone on the moon would be one of the brighter radio astronomy sources in the sky, to give you an idea!) Radio Frequency Interference (RFI) is super important for the field, so much that people can spend their careers on it (I’ve written a chapter on my thesis on this myself), and the “radio environment” of an observatory can be worth a paper in itself.”

Beyond these apparent incongruities, Cendes also states that the hypothesis for the experiment was flawed. Essentially, the Big Ear searched for the same signal for a period of 22 years, but found nothing. If the comet hypothesis held true, there should be an explanation as to why no trace of the signal was found until this time. Alas, one is lacking, as far as this most recent study is concerned.

“And now you likely have an idea on why one-off events are so hard to prove in science,” she claims. “But then, this is really the major reason the Wow! signal is unsolved to this day- without a plausible explanation, [without] additional data, we just will never know.”

Though it may be hard to accept, it is entirely possible that we may never know what the Wow! signal truly was – whether it was a one-off event, a naturally-occurring phenomena, or something else entirely. And if the comet hypothesis should prove to be unverifiable, then that is certainly good news for the SETI enthusiasts!

While the elimination of natural explanations doesn’t prove that things like Wow! signal are proof of alien civilizations, it at least indicates that this possibility cannot be ruled out just yet. And for those hopeful that evidence of intelligent life will be someday found, that’s really the best we can hope for… for now!

Further Reading: Journal of the Washington Academy of Sciences, Astronomer Here!

Black Hole Imaged For First Time By Event Horizon Telescope

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF

For decades, scientists have held that Supermassive Black Holes (SMBHs) reside at the center of larger galaxies. These reality-bending points in space exert a extremely powerful influence on all things that surround them, consuming matter and spitting out a tremendous amount of energy. But given their nature, all attempts to study them has been confined to indirect methods.

All of that changed beginning on Wednesday, April 12th, 2017, when an international team of astronomers obtained the first-ever image of a Sagittarius A*. Using a series of telescopes from around the globe – collectively known as the Event Horizon Telescope (EHT) – they were able to visualize the  mysterious region around this giant black hole from which matter and energy cannot escape – i.e. the event horizon.

Not only is this the first time that this mysterious region around a black hole has been imaged, it is also the most extreme test of Einstein’s Theory of General Relativity ever attempted. It also represents the culmination of the EHT project, which was established specifically for the purpose of studying black holes directly and improving our understanding of them.

Simulated view of a black hole. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke/Radboud University

Since it began capturing data in 2006, the EHT has been dedicated to the study of Sagitarrius A* since it is the nearest SMBH in the known Universe – located about 25,000 light years from Earth. Specifically, scientists hoped to determine if black holes are surrounded by a circular region from which matter and energy cannot escape (which is predicted by General Relativity), and how they accrete matter onto themselves.

Rather than constituting a single facility, the EHT relies on a worldwide network of radio astronomy facilities based on four continents, all of which are dedicated to studying one of the most powerful and mysterious forces in the Universe. This process, whereby widely-space radio dishes from across the globe are connected into an Earth-sized virtual telescope, is known as Very Long Baseline Interferometry (VLBI).

As Michael Bremer – an astronomer at the International Research Institute for Radio Astronomy (IRAM) and a project manager for the Event Horizon Telescope – said in an interview with AFP:

“Instead of building a telescope so big that it would probably collapse under its own weight, we combined eight observatories like the pieces of a giant mirror. This gave us a virtual telescope as big as Earth—about 10,000 kilometers (6,200 miles) is diameter.”

Sagittarius A is the super-massive black hole at the center of our Milky Way Galaxy. It is shown in x-ray (blue) and infrared (red) in this combined image from the Chandra Observatory and the Hubble Space Telescope. Image: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI
Combined image of Sagittarius A shown in x-ray (blue) and infrared (red), provided by the Chandra Observatory and the Hubble Space Telescope. Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

All told, the network includes instruments like the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the Arizona Radio Observatory Submillimeter Telescope, the IRAM 30-meter Telescope in Spain, the Large Millimeter Telescope Alfonso Serrano in Mexico, the South Pole Telescope in Antarctica, and the James Clerk Maxwell Telescope and Submillimeter Array at Mauna Kea, Hawaii.

With these arrays, the EHT radio-dish network is the only one powerful enough to detect the light released when an object would disappear into Sagittarius A*. And from six nights – from Wednesday, April 5th, to Tuesday, April 11th, – all of its arrays were trained on the center of our Milky Way to do just that. By the end of the run, the international team announced that they had snapped the first-ever picture of an event horizon.

In the end, some 500 terabytes of data were collected. This data is now being transferred to the MIT Haystack Observatory in Massachusetts, where it will be processed by supercomputers and turned into an image. “For the first time in our history, we have the technological capacity to observe black holes in detail,” said Bremer. “The images will emerge as we combine all the data. But we’re going to have to wait several months for the result.”

Part of the reason for the wait is the fact that the recorded data obtained by the South Pole Telescope can only be collected when spring starts in Antarctica – which won’t happen until October 2017 at the earliest. As such, it won’t be until 2018 before the public gets to feast its eyes on the shadow region that surrounds Sagittarius A*, and it is not expected that the first image will be entirely clear.

As Heino Falcke – an astronomers from Radbound University who now chairs the Scientific Council of EHT (and was the one who proposed this experiment twenty years ago) – explained in a EHT press release prior to the observation being made:

“It is the challenge of doing something, that has never been attempted before. It is the start of an adventurous journey towards a black hole… However, I think we need more observation campaigns and eventually more telescopes in the network to make a really good image.”

Despite the wait, and the fact that repeated attempts will be needed before we can get our first clear look at a black hole, there is still plenty of reason to celebrate in the meantime. Not only was this a first that was a long time in he making, but it also represents a major leap towards understanding one of the most powerful and mysterious forces of nature.

Given time, the study of black holes may allow for us to finally resolve how gravity and the other fundamental forces of the Universe interact. At long last, we will be able to comprehend all of existence as a single, unified equation!

Further Reading: Event Horizon Telescope, NRAO