A New Space Telescope will Map the Universe and Help Protect the Earth from Asteroids

This artist's illustration shows NASA's SPHEREx observatory in orbit. The mission will launch in 2025. Image Credit: By NASA/JPL - https://www.jpl.nasa.gov/missions/spherex, Public Domain, https://commons.wikimedia.org/w/index.php?curid=143819030

Can we secure our place in the Solar System? Not in any absolute sense because nature can be very unpredictable. But we can make the effort to safeguard our civilization by cataloguing potentially dangerous asteroids. An upcoming space telescope will help.

Continue reading “A New Space Telescope will Map the Universe and Help Protect the Earth from Asteroids”

DART Had a Surprising Impact on its Target

This Hubble image shows debris from Dimorphos about one day after NASA's DART spacecraft slammed into it. Image Credit: NASA, ESA, STScI, J. Li (PSI)

After NASA’s DART mission slammed into asteroid Dimorphous in September 2022, scientists determined the impact caused tons of rock to be ejected from the small asteroid’s surface. But more importantly, DART’s impact altered Dimorphos’ orbital period, decreasing it by about 33 minutes.

However, a group of researchers measured the orbital period about a month later and discovered that it had increased to 34 minutes — 1 minute longer than the first measurements. Even though it was a single impact from DART, some force continued to slow the asteroid’s orbit, and astronomers don’t yet know what that mechanism might be.

Continue reading “DART Had a Surprising Impact on its Target”

Here's How NASA is Planning to Protect Earth From Asteroids and Comets

This diagram shows the orbits of 2,200 potentially hazardous objects as calculated by JPL’s Center for Near Earth Object Studies (CNEOS). Highlighted is the orbit of the double asteroid Didymos, the target of NASA’s Double Asteroid Redirect Test (DART) mission. Credit: NASA/JPL-Caltech

The large impact craters dotting our planet are powerful reminders that asteroids and comets strike the Earth from time to time. As often said, it’s not a question of “if”; it’s a matter of “when” our planet will face an impending strike from space. But an impact is one existential threat humanity is finally starting to take seriously and wrap its head around.

Seemingly spurred by the success of the Double Asteroid Redirection Test (DART), NASA just released a new planetary defense strategy and action plan, describing its efforts to find and identify potentially hazardous objects to provide an advanced warning, and then even push them off an impact trajectory.

This 10-year strategy looks to advance efforts to protect the Earth from a devastating encounter with a Near Earth asteroid or comet.

Continue reading “Here's How NASA is Planning to Protect Earth From Asteroids and Comets”

Success! DART Impact Shortened Asteroid’s Orbit Time by 32 Minutes

Debris from asteroid targeted by DART
A Hubble Space Telescope image from Oct. 8 shows the debris blasted from the surface of an asteroid called Dimorphos 12 days after it was struck by NASA's DART spacecraft. (Credit: NASA / ESA / STScI / Hubble)

NASA says its DART spacecraft caused a larger-than-expected change in the path of its target asteroid when they collided two weeks ago — marking a significant milestone in the effort to protect our planet from killer space rocks.

Ten months after it was launched, the Double Asteroid Redirection Test’s refrigerator-sized robotic probe crashed into a 560-foot-wide asteroid called Dimorphos on Sept. 26, as it circled a bigger asteroid known as Didymos. The paired asteroids were 7 million miles from Earth at the time, and posed no threat to Earth before or after the smashup.

Before the crash, DART’s science team said they expected the collision to reduce the time it took for Dimorphos to go around Didymos by about 10 minutes. NASA would have regarded any change in excess of 73 seconds as a success.

After the crash, detailed observations from ground-based observatories showed that the orbit was actually 32 minutes shorter — going from 11 hours and 55 minutes to 11 hours and 23 minutes. That’s three times as much of a change as scientists were expecting. Scientists also said Dimorphos appears to be slightly closer to Didymos.

“This is a watershed moment for planetary defense, and a watershed moment for humanity,” NASA Administrator Bill Nelson said today. “All of us have a responsibility to protect our home planet. After all, it’s the only one we have.”

Continue reading “Success! DART Impact Shortened Asteroid’s Orbit Time by 32 Minutes”

LICIACube Sends Home Images of the DART Impact and the Damage to Dimorphos

Image captured by the Italian Space Agency’s LICIACube a few minutes after the intentional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Dimorphos, captured on Sept. 26, 2022. Credits: ASI/NASA
Image captured by the Italian Space Agency’s LICIACube a few minutes after the intentional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Dimorphos, captured on Sept. 26, 2022. Credits: ASI/NASA

The Light Italian CubeSat for Imaging of Asteroids (LICIACube) has returned a series of close-up images of the asteroid Dimorphos, after last week’s successful impact of the Double Asteroid Redirect Test (DART) probe. LICIACube was built and operated by the Italian Space Agency (ASI), and was designed to capture post-impact imagery for the DART team, to help assess the effects of the impact.

Continue reading “LICIACube Sends Home Images of the DART Impact and the Damage to Dimorphos”

China is Building an Asteroid Deflection Mission of its own, due for Launch in 2025

Illustration of the DART spacecraft with the Roll Out Solar Arrays (ROSA) extended. Credit: NASA

There’s an old joke that the dinosaurs are only extinct because they didn’t develop a space agency. The implication, of course, is that unlike our reptilian ancestors, we humans might be able to save ourselves from an impending asteroid strike on Earth, given our six-and-a-half decades of spaceflight experience. But the fact is that while we have achieved amazing things since Sputnik kicked off the space age in 1957, very little effort thus far has gone into developing asteroid deflection technologies. We are woefully inexperienced in this arena, and aside from our Hollywood dramatizations of it, we’ve never yet put our capabilities to the test. But that’s about to change.

Continue reading “China is Building an Asteroid Deflection Mission of its own, due for Launch in 2025”

Space Force is Releasing Decades of Tracking Data on a Thousand Bright Meteor Fireballs

Bright Fireball Credit: Adrian West

When a meteoroid enters the Earth’s atmosphere at a very high speed it heats up. This heating up produces a streak of light and is termed a meteor. When a meteor is bright enough, about the brightness of Venus or brighter, it becomes a fireball. Sometimes these fireballs explode in the atmosphere, becoming bolides. These bolides are bright enough to be seen even during the day.

Studying bolides as they pass through the atmosphere can help model larger asteroids, something of interest to the Planetary Defense Coordination Office (PDCO) which is run by NASA. These asteroids can be deadly if they are large enough, and learning how to predict their behavior is essential to protecting our planet from a devastating impact with long-term implications for the survival of many species on Earth.

Continue reading “Space Force is Releasing Decades of Tracking Data on a Thousand Bright Meteor Fireballs”

Last-Minute Defense Against an Asteroid That Could Obliterate it Before Impact

Mining asteroids might be necessary for humanity to expand into the Solar System. But what effect would asteroid mining have on the world's economy? Credit: ESA.

Gazing at the night sky can evoke a sense of wonder regarding humanity’s place in the Universe. But that’s not all it can evoke. If you’re knowledgeable about asteroid strikes like the one that wiped out the dinosaurs, then even a fleeting meteorite can nudge aside your enjoyable sense of wonder. What if?

Luckily, planetary defence is at the top of mind for some scientists and engineers. One of those scientists is Professor Philip Lubin from the University of California Santa Barbara. Lubin is developing his idea called PI-Terminal Defense for Humanity. The PI stands for Pulverize It, and Lubin thinks pulverizing an incoming impactor into tiny pieces is our best bet to protect ourselves from an asteroid on short notice.

Continue reading “Last-Minute Defense Against an Asteroid That Could Obliterate it Before Impact”

You Can Blow Up an Asteroid Just a few Months Before it Hits Earth and Prevent 99% of the Damage

An artist's impression of a Nearth-Earth Asteroid (NEA) breaking up. Credit: NASA/JPL-Caltech

So far, the battle between life on Earth and asteroids has been completely one-sided. But not for long. Soon, we’ll have the capability to deter asteroids from undesirable encounters with Earth. And while conventional thinking has said that the further away the better when it comes to intercepting one, we can’t assume we’ll always have enough advance warning.

A new study says we might be able to safely destroy potentially dangerous rocky interlopers, even when they get closer to Earth than we’d like.

Continue reading “You Can Blow Up an Asteroid Just a few Months Before it Hits Earth and Prevent 99% of the Damage”

If you Want to Move an Asteroid, you Need the Right Kind of Nuclear Explosion

Artist's concept of a large asteroid passing by the Earth-Moon system. Credit: A combination of ESO/NASA images courtesy of Jason Major/Lights in the Dark.

Using nuclear devices to deflect or disrupt an asteroid. Sounds a bit crazy, no? Maybe a little too Hollywood? And yet, detonating nukes in space may be necessary someday for the sake of planetary defense. In order for this method to be effective, scientists need to work out all the particulars in advance. That means knowing how much force will be necessary depending on the mass and trajectory of the asteroid.

Recently, a research collaboration between Lawrence Livermore National Laboratory (LLNL) and the Air Force Institute of Technology (AFIT) investigated how the energy output of a nuclear detonation could affect the path of an asteroid. This consisted of modeling different nuclear reactions (fission or fusion) to determine the neutron energy generated, which could potentially pave the way for a new type of asteroid redirect mission (ARM).

Continue reading “If you Want to Move an Asteroid, you Need the Right Kind of Nuclear Explosion”