High Energy Neutrinos Are Coming From Supermassive Black Holes

Neutrinos are mysterious and elusive particles. They have a tiny mass, no electric charge, and they interact with other matter only rarely. They are also extremely common. At any moment, about 100 billion neutrinos are streaming through every square centimeter of your body. Neutrinos were produced by the big bang, and are still being produced by everything from stars to supernovae.

Continue reading “High Energy Neutrinos Are Coming From Supermassive Black Holes”

Why was there more matter than antimatter in the Universe? Neutrinos might give us the answer

The universe is filled with matter, and we don’t know why. We know how matter was created, and can even create matter in the lab, but there’s a catch. Every time we create matter in particle accelerators, we get an equal amount of antimatter. This is perfectly fine for the lab, but if the big bang created equal amounts of matter and antimatter, the two would have destroyed each other early on, leaving a cosmic sea of photons and no matter. If you are reading this, that clearly didn’t happen.

Continue reading “Why was there more matter than antimatter in the Universe? Neutrinos might give us the answer”

Did Neutrinos Stop The Early Universe From Annihilating Itself?

Illustration of the Big Bang Theory

We can create matter from energy in the lab. Particle accelerators do this all the time. When we do, half of what is created is matter and the other half antimatter. There is a symmetry in physics that requires matter and antimatter to appear in equal amounts. But when we look around the universe, what we see is matter. So how did the big bang create all the matter we see without creating an equal amount of antimatter? The answer could be neutrinos.

Continue reading “Did Neutrinos Stop The Early Universe From Annihilating Itself?”

Neutrinos Have Been Detected With Such High Energy That The Standard Model Can’t Explain Them

Although neutrinos are mysterious particles, they are remarkably common. Billions of neutrinos pass through your body every second. But neutrinos rarely interact with regular matter, so detecting them is a big engineering challenge. Even when we do detect them, the results don’t always make sense. For example, we’ve recently detected neutrinos that have so much energy we have no idea how they are created.

Continue reading “Neutrinos Have Been Detected With Such High Energy That The Standard Model Can’t Explain Them”

Physicists Don’t Know the Mass of a Neutrino, But Now They Know it’s No Larger Than 1 Electron Volt

The Standard Model of Particle Physics is one of science’s most impressive feats. It’s a rigorous, precise effort to understand and describe three of the four fundamental forces of the Universe: the electromagnetic force, the strong nuclear force, and the weak nuclear force. Gravity is absent because so far, fitting it into the Standard Model has been extremely challenging.

But there are some holes in the Standard Model, and one of them involves the mass of the neutrino.

Continue reading “Physicists Don’t Know the Mass of a Neutrino, But Now They Know it’s No Larger Than 1 Electron Volt”

Advanced Civilizations Could be Communicating with Neutrino Beams. Transmitted by Clouds of Satellites Around Neutron Stars or Black Holes

In 1960, famed theoretical physicist Freeman Dyson made a radical proposal. In a paper titled “Search for Artificial Stellar Sources of Infrared Radiation” he suggested that advanced extra-terrestrial intelligences (ETIs) could be found by looking for signs of artificial structures so large, they encompassed entire star systems (aka. megastructures). Since then, many scientists have come up with their own ideas for possible megastructures.

Like Dyson’s proposed Sphere, these ideas were suggested as a way of giving scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) something to look for. Adding to this fascinating field, Dr. Albert Jackson of the Houston-based technology company Triton Systems recently released a study where he proposed how an advanced ETI could use rely on a neutron star or black hole to focus neutrino beams to create a beacon.

Continue reading “Advanced Civilizations Could be Communicating with Neutrino Beams. Transmitted by Clouds of Satellites Around Neutron Stars or Black Holes”

Dark Matter Detector Finds the Rarest Event Ever Seen in the Universe

Since the 1960s, scientists have theorized that the Universe is filled with a mysterious, invisible mass. Known as “dark matter“, this mass is estimated to make up roughly 85% of the matter in the Universe and a quarter of its energy density. While this mass has been indirectly observed and studied, all attempts at determining its true nature have so far failed.

To address this, multiple experiments are being carried out that rely on immensely sophisticated instruments. One of these, called XENON, recently observed a process that had previously avoided multiple attempts at detection. These results could help scientists to improve their understanding of neutrinos, which some scientists believe is what dark matter is made up of.

Continue reading “Dark Matter Detector Finds the Rarest Event Ever Seen in the Universe”

The Earth Does Stop the Occasional Neutrino

At the Amundsen–Scott South Pole Station in Antarctica lies the IceCube Neutrino Observatory – a facility dedicated to the study of elementary particles known as neutrino. This array consists of 5,160 spherical optical sensors – Digital Optical Modules (DOMs) – buried within a cubic kilometer of clear ice. At present, this observatory is the largest neutrino detector in the world and has spent the past seven years studying how these particles behave and interact.

The most recent study released by the IceCube collaboration, with the assistance of physicists from Pennsylvania State University, has measured the Earth’s ability to block neutrinos for the first time. Consistent with the Standard Model of Particle Physics, they determined that while trillions of neutrinos pass through Earth (and us) on a regular basis, some are occasionally stopped by it.

The study, titled “Measurement of the Multi-TeV Neutrino Interaction Cross-Section with IceCube Using Earth Absorption“, recently appeared in the scientific journal Nature. The study team’s results were based on the observation of 10,784 interactions made by high-energy, upward moving neutrinos, which were recorded over the course of a year at the observatory.

The IceCube Neutrino Observatory at the South Pole. Credit: Emanuel Jacobi/NSF

Back in 2013, the first detections of high-energy neutrinos were made by IceCube collaboration. These neutrinos – which were believed to be astrophysical in origin – were in the peta-electron volt range, making them the highest energy neutrinos discovered to date. IceCube searches for signs of these interactions by looking for Cherenkov radiation, which is produced after fast-moving charged particles are slowed down by interacting with normal matter.

By detecting neutrinos that interact with the clear ice, the IceCube instruments were able to estimate the energy and direction of travel of the neutrinos. Despite these detections, however, the mystery remained as to whether or not any kind of matter could stop a neutrino as it journeyed through space. In accordance with the Standard Model of Particle Physics, this is something that should happen on occasion.

After observing interactions at IceCube for a year, the science team found that the neutrinos that had to travel the farthest through Earth were less likely to reach the detector. As Doug Cowen, a professor of physics and astronomy/astrophysics at Penn State, explained in a Penn State press release:

“This achievement is important because it shows, for the first time, that very-high-energy neutrinos can be absorbed by something – in this case, the Earth. We knew that lower-energy neutrinos pass through just about anything, but although we had expected higher-energy neutrinos to be different, no previous experiments had been able to demonstrate convincingly that higher-energy neutrinos could be stopped by anything.”

The Icetop Tank, the neutrino detectors at the heart of the IceCube Neutrino Observatory. Credit: Dan Hubert

The existence of neutrinos was first proposed in 1930 by theoretical physicist Wolfgang Pauli, who postulated their existence as a way of explaining beta decay in terms of the conservation of energy law. They are so-named because they are electrically neutral, and only interact with matter very weakly – i.e. through the weak subatomic force and gravity. Because of this, neutrinos pass through normal matter on a regular basis.

Whereas neutrinos are produced regularly by stars and nuclear reactors here on Earth, the first neutrinos were formed during the Big Bang. The study of their interaction with normal matter can therefore tell us much about how the Universe evolved over the course of billions of years. Many scientists anticipate that the study of neutrinos will indicate the existence of new physics, ones which go beyond the Standard Model.

Because of this, the science team was somewhat surprised (and perhaps disappointed) with their results. As Francis Halzen – the principal investigator for the IceCube Neutrino Observatory and a professor of physics at the University of Wisconsin-Madison – explained:

“Understanding how neutrinos interact is key to the operation of IceCube. We were of course hoping for some new physics to appear, but we unfortunately find that the Standard Model, as usual, withstands the test.

Looking down one of IceCube’s detector bore holes. Credit: IceCube Collaboration/NSF

For the most part, the neutrinos selected for this study were more than one million times more energetic than those that are produced by our Sun or nuclear power plants. The analysis also included some that were astrophysical in nature – i.e. produced beyond Earth’s atmosphere – and may have been accelerated towards Earth by supermassive black holes (SMBHs).

Darren Grant, a professor of physics at the University of Alberta, is also the spokesperson for the IceCube Collaboration. As he indicated, this latest interaction study opens doors for future neutrino research. “Neutrinos have quite a well-earned reputation of surprising us with their behavior,” he said. “It is incredibly exciting to see this first measurement and the potential it holds for future precision tests.”

This study not only provided the first measurement of the Earth’s absorption of neutrinos, it also offers opportunities for geophysical researchers who are hoping to use neutrinos to explore Earth’s interior. Given that Earth is capable of stopping some of the billions of high-energy particles that routinely pass through it, scientists could develop a method for studying the Earth’s inner and outer core, placing more accurate constraints on their sizes and densities.

It also shows that the IceCube Observatory is capable of reaching beyond its original purpose, which was particle physics research and the study of neutrinos. As this latest study clearly shows, it is capable of contributing to planetary science research and nuclear physics as well. Physicists also hope to use the full 86-string IceCube array to conduct a multi-year analysis, examining even higher ranges of neutrino energies.

This event display shows “Bert,” one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). Credit: Berkeley Labs.

As James Whitmore – the program director in the National Science Foundation’s (NSF) physics division (which provides support for IceCube) – indicated, this could allow them to truly search for physics that go beyond the Standard Model.

“IceCube was built to both explore the frontiers of physics and, in doing so, possibly challenge existing perceptions of the nature of universe. This new finding and others yet to come are in that spirit of scientific discovery.”

Ever since the discovery of the Higgs boson in 2012, physicists have been secure in the knowledge that the long journey to confirm the Standard Model was now complete. Since then, they have set their sets farther, hoping to find new physics that could resolve some of the deeper mysteries of the Universe – i.e. supersymmetry, a Theory of Everything (ToE), etc.

This, as well as studying how physics work at the highest energy levels (similar to those that existed during the Big Bang) is the current preoccupation of physicists. If they are successful, we might just come to understand how this massive thing known as the Universe works.

Further Reading: Penn State, Nature

Experiment Detects Mysterious Neutrino-Nucleus Scattering For the First Time

Neutrinos are one of the fundamental particles that make up the Universe. Compared to other types of particles, they have very little mass, no charge, and only interact with others via the weak nuclear force and gravity. As such, finding evidence of heir interactions is extremely difficult, requiring massive instruments located deep underground to shield them from any interference.

However, using the Spallation Neutron Source (SNS), a research facility located at the Oak Ridge National Laboratory (ORNL) – a international team of researchers recently made an historic discovery about neutrinos using an entirely different method. As part of the COHERENT experiment, these results confirm a prediction made 43 years ago and offers new possibilities for neutrino research.

The study that details their findings, titled “Observation of coherent elastic neutrino-nucleus scattering“, was recently published in the journal Science. The research was conducted as part of the COHERENT experiment, a collaboration of 80 researchers from 19 institutions from more 4 nations that has been searching for what is known as Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) for over a year.

The COHERENT collaboration is the first experiment to observe coherent elastic neutrino–nucleus scattering. Their results confirm a prediction of the Standard Model and establish constraints on alternative theoretical models. Credit: COHERENT Collaboration

In finding evidence of this behavior, COHERENT has essentially made history. As Jason Newby, an ORNL physicist and the technical coordinator for COHERENT, said in a ORNL press statement:

“The one-of-a-kind particle physics experiment at Oak Ridge National Laboratory was the first to measure coherent scattering of low-energy neutrinos off nuclei.”

To break it all down, the Standard Model of particle physics indicates that neutrinos are leptons, a particle that interacts with other matter very weakly. They are created through radioactive decay, the nuclear reactions that power stars, and from supernovae. The Big Bang model of cosmology also predicts that neutrinos are the most abundant particles in existence, since they are a byproduct of the creation of the Universe.

As such, their study has been a major focal point for theoretical physicists and cosmologists. In previous studies, neutrino interactions were detected by using literally tons of target material and then examining the particle transformations that resulted from neutrinos hitting them.

Examples include the Super-Kamiokande Observatory in Japan, an underground facility where the target material is 50,000 tons of ultrapure water. In the case of SNOLAB’s Sudbury Neutrino Observatory – which is located in a former mine complex near Sudbury, Ontario – the SNO neutrino detector relies on heavy water for neutrino detection while the SNO+ experiment will use a liquid scintillator.

Super-Kamiokande, a neutrino detector in Japan, holds 50,000 tons of ultrapure water surrounded by light tubes. Credit: Super-Kamiokande Observatory

And the IceCube Neutrino Observatory– the largest neutrino detector in the world, located at the Amundsen–Scott South Pole Station in Antarctica – relies on Antarctic ice to detect neutrino interactions.  In all cases, the facilities are extremely isolated and rely on a very expensive equipment.

The COHERENT experiment, however, is immensely smaller and more economical by comparison, weighing a mere 14.5 kg (32 lbs) and occupying far less in the way of space. The experiment was created to take advantage of the existing SNS accelerator-based system, which produces the most intense pulsed neutron beams in the world in order to smash mercury atoms with beams of protons.

This process creates massive amounts of neutrons which are used for various scientific experiments. However, the process also creates a significant amount of neutrinos as a byproduct. To take advantage of this, the COHERENT team began developing a neutrino experiment known as “neutrino alley”. Located in a basement corridor just 20 meters (45 feet) from the mercury tank, the thick concrete walls and gravel provide natural shielding.

The corridor is also fitted with large water tanks to block out additional neutrinos, cosmic rays and other particles. But unlike other experiments, the COHERENT detectors look for signs of neutrinos bumping into the nuclei of other atoms. To do this, the team outfitted the corridor with detectors that rely on a cesium iodide scintillator crystal, which also uses odium to increase the prominence of light signals caused by neutrino interactions.

SNS Beamline 13, where protons are slammed into atoms of mercury to release a slew of energetic particles. Credit: ORNL/U.S. Dept. of Energy/Genevieve Martin

Juan Collar, a physicist from the University of Chicago, led the design team that created the detector used at SNS. As he explained, this was a “back-to-basics” approach that did away with more expensive and massive detectors:

“They are arguably the most pedestrian kind of radiation detector available, having been around for a century. Sodium-doped cesium iodide merges all of the properties required to work as a small, ‘handheld’ coherent neutrino detector. Very often, less is more.”

Thanks to their experiment and the sophistication of the SNS, the researchers were able to determine that neutrinos are capable of coupling to quarks through the exchange of neutral Z bosons. This process, which is known as Coherent Elastic Neutrino-Nucleus Scattering (CEvNS), was first predicted in 1973. But until now, no experiment or research team has been able to confirm it.

As Jason Newby indicated, the experiment succeeded in large part thanks to the sophistication of the existing facility. “The energy of the SNS neutrinos is almost perfectly tuned for this experiment—large enough to create a detectable signal, but small enough to take advantage of the coherence condition,” he said. “The only smoking gun of the interaction is a small amount of energy imparted to a single nucleus.”

The data it produced was also cleaner than with previous experiments, since the neutrinos (like the SNS neutron beam that produced them) were also pulsed. This allowed for the easy separation of the signal from background signals, which offered an advantage over steady-state neutrino sources – such as those that are produced by nuclear reactors.

Professor Yuri Efremenko of the University of Tennessee–Knoxville and Jason Newby of ORNL – two members of COHERENT. Credit: ORNL/U.S. Dept. of Energy/Genevieve Martin

The team also detected three “flavors” of neutrinos, which included muon neutrinos, muon antineutrinos, and electron neutrinos. Whereas the muon neutrinos emerged instantaneously, the others were detected a few microseconds later. From this, the COHERENT team not only validated the theory of CEvNS, but also the Standard Model of particle physics. Their findings also have implications for astrophysics and cosmology.

As Kate Scholberg, a physicist from Duke University and COHERENT’s spokesperson, explained:

“When a massive star collapses and then explodes, the neutrinos dump vast energy into the stellar envelope. Understanding the process feeds into understanding of how these dramatic events occur… COHERENT’s data will help with interpretation of measurements of neutrino properties by experiments worldwide. We may also be able to use coherent scattering to better understand the structure of the nucleus.”

While there is no need for further confirmation of their results, the COHERENT researchers plan to conduct additional measurements in order to observe coherent neutrino interactions at distinct rates (another signature of the process). From this, they hope to expand their knowledge of the nature of CEvNS, as well as other basic neutrino properties – such as their intrinsic magnetism.

This discovery was certainly impressive in its own right, given that it validates an aspect of both the Standard Model of particle physics and Big Bang cosmology. But the fact that the method offers cleaner results and relies on instruments that are significantly smaller and less expensive than other experiments – that is very impressive!

The implications of this research are sure to be far-reaching, and it will be interesting to see what other discoveries it enables in the future!

Further Reading: ScienceOak Ridge National Laboratory

We’re One Step Closer to Knowing Why There’s More Matter Than Antimatter in the Universe

The Standard Model of particle physics has been the predominant means of explaining what the basic building blocks of matter are and how they interact for decades. First proposed in the 1970s, the model claims that for every particle created, there is an anti-particle. As such, an enduring mystery posed by this model is why the Universe can exist if it is theoretically made up of equal parts of matter and antimatter.

This seeming disparity, known as the charge-parity (CP) violation, has been the subject of experiments for many years. But so far, no definitive demonstration has been made for this violation, or how so much matter can exist in the Universe without its counterpart. But thanks to new findings released by the international Tokai-to-Kamioka (T2K) collaboration, we may be one step closer to understanding why this disparity exists.

First observed in 1964, CP violation proposes that under certain conditions, the laws of charge-symmetry and parity-symmetry (aka. CP-symmetry) do not apply. These laws state that the physics governing a particle should be the same if it were interchanged with its antiparticle, while its spatial coordinates would be inverted. From this observation, one of the greatest cosmological mysteries emerged.

If the laws governing matter and antimatter are the same, then why is it that the Universe is so matter-dominated? Alternately, if matter and antimatter are fundamentally different, then how does this accord with our notions of symmetry? Answering these questions is not only important as far as our predominant cosmological theories go, they are also intrinsic to understanding how the weak interactions that govern particles work.

Established in June of 2011, the international T2K collaboration is the first experiment in the world dedicated to answering this mystery by studying neutrino and anti-neutrino oscillations. The experiment begins with high-intensity beams of muon neutrinos (or muon anti-neutrinos) being generated at the Japan Proton Accelerator Research Complex (J-PARC), which are then fired towards the Super-Kamiokande detector 295 km away.

This detector is currently one of the world’s largest and most sophisticated, dedicated to the detection and study of solar and atmospheric neutrinos. As neutrinos travel between the two facilities, they change “flavor” – going from muon neutrinos or anti-neutrinos to electron neutrinos or anti-neutrinos. In monitoring these neutrino and anti-neutrino beams, the experiment watches for different rates of oscillation.

This difference in oscillation would show that there is an imbalance between particles and antiparticles, and thus provide the first definitive evidence of CP violation for the first time. It would also indicate that there are physics beyond the Standard Model that scientists have yet to probe. This past April, the first data set produced by T2K was released, which provided some telling results.

The detected pattern of an electron neutrino candidate event observed by Super-Kamiokande. Credit: Kavli IMPU

As Mark Hartz, a T2K collaborator and the Kavli IPMU Project Assistant Professor, said in a recent press release:

“While the data sets are still too small to make a conclusive statement, we have seen a weak preference for large CP violation and we are excited to continue to collect data and make a more sensitive search for CP violation.”

These results, which were recently published in the Physical Review Letters, include all data runs from between January 2010 to May 2016. In total, this data comprised 7.482 x 1020 protons (in neutrino mode), which yielded 32 electron neutrino and 135 muon neutrino events, and 7.471×1020 protons (in antineutrino mode), which yielded 4 electron anti-neutrino and 66 muon neutrino events.

In other words, the first batch of data has provided some evidence for CP violation, and with a confidence interval of 90%. But this is just the beginning, and the experiment is expected to run for another ten years before wrapping up. “If we are lucky and the CP violation effect is large, we may expect 3 sigma evidence, or about 99.7% confidence level, for CP violation by 2026,” said Hartz.

If the experiment proves successful, physicists may finally be able to answer how it is that the early Universe didn’t annihilate itself. It is also likely help to reveal aspects of the Universe that particle physicists are anxious to get into! For it here that the answers to the deepest secrets of the Universe, like how all of its fundamental forces fit together, are likely to be found.

Further Reading: Kavli IMPU, Physical Review Letters