More Surface Ice on Mercury than Previously Thought, says New Study

Back in 2012, scientists were delighted to discover that within the polar regions of Mercury, vast amounts of water ice were detected. While the existence of water ice in this permanently-shaded region had been the subject of speculation for about 20 years, it was only after the Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft studied the polar region that this was confirmed.

Based on the MESSENGER data, it was estimated that Mercury could have between 100 billion to 1 trillion tons of water ice at both poles, and that the ice could be up to 20 meters (65.5 ft) deep in places. However, a new study by a team of researchers from Brown University indicates that there could be three additional large craters and many more smaller ones in the northern polar region that also contain ice.

The study, titled “New Evidence for Surface Water Ice in Small-Scale Cold Traps and in Three Large Craters at the North Polar Region of Mercury from the Mercury Laser Altimeter“, was recently published in the Geophysical Research Letters. Led by Ariel Deutsch, a NASA ASTAR Fellow and a PhD candidate at Brown University, the team considered how small-scale deposits could dramatically increase the overall amount of ice on Mercury.

Artist’s concept of the MESSENGER spacecraft on approach to Mercury. Credit: NASA/JPL

Despite being the closest planet to the Sun, and experiencing scorching surface temperatures on its Sun-facing side, Mercury’s low axial tilt means that its polar regions are permanently shaded and experience average temperatures of about 200 K (-73 °C; -100 °F). The idea that ice might exist in these regions dates back to the 1990s, when Earth-based radar telescopes detected highly reflective spots within the polar craters.

This was confirmed when the MESSENGER spacecraft detected neutron signals from the planet’s north pole that were consistent with water ice. Since that time, it has been the general consensus that Mercury’s surface ice was confined to seven large craters. But as Ariel Deutsch explained in a Brown University press statement, she and her team sought to look beyond them:

“The assumption has been that surface ice on Mercury exists predominantly in large craters, but we show evidence for these smaller-scale deposits as well. Adding these small-scale deposits to the large deposits within craters adds significantly to the surface ice inventory on Mercury.”

For the sake of this new study, Deutsch was joined by Gregory A. Neumann, a research scientist from NASA’s Goddard Space Flight Center, and James W. Head. In addition to being a professor the Department of Earth, Environmental and Planetary Sciences at Brown, Head was also a co-investigator for the MESSENGER and the Lunar Reconnaissance Orbiter missions.

A view of the crater Prokofiev on Mercury. The crater is the largest one on the planet’s north pole area to have “radar-bright” material, a probable sign of ice. Credit: NASA/JHUAPL/CIW

Together, they examined data from MESSENGER’s Mercury Laser Altimeter (MLA) instrument. This instrument was used by MESSENGER to measure the distance between the spacecraft and Mercury, the resulting data being then used to create detailed topographical maps of the planet’s surface. But in this case, the MLA was used to measure surface reflectance, which indicated the presence of ice.

As an instrument specialist with the MESSENGER mission, Neumann was responsible for calibrating the altimeter’s reflectance signal. These signals can vary based on whether the measurements are taken from overhead or at an angle (the latter of which is refereed to as “off-nadir” readings). Thanks to Neumann’s adjustments, researchers were able to detect high-reflectance deposits in three more large craters that were consistent with water ice.

According to their estimates, these three craters could contain ice sheets that measure about 3,400 square kilometers (1313 mi²). In addition, the team also looked at the terrain surrounding these three large craters. While these areas were not as reflective as the ice sheets inside the craters, they were brighter than the Mercury’s average surface reflectance.

Beyond this, they also looked at altimeter data to seek out evidence of smaller scale deposits. What they found was four smaller craters, each with diameters of less than 5 km (3 mi), which were also more reflective than the surface. From this, they deduced that there were not only more large deposits of ice that were previously undiscovered, but likely many smaller “cold traps” where ice could exist as well.

A forced perspective view of Mercury’s cratered north pole, showing the presence of water ice in yellow. Credit: NASA/JHUAPL/CIW

Between these three newly-discovered large deposits, and what could be hundreds of smaller deposits, the total volume of ice on Mercury could be considerably more than we previously thought. As Deutsch said:

“We suggest that this enhanced reflectance signature is driven by small-scale patches of ice that are spread throughout this terrain. Most of these patches are too small to resolve individually with the altimeter instrument, but collectively they contribute to the overall enhanced reflectance… These four were just the ones we could resolve with the MESSENGER instruments. We think there are probably many, many more of these, ranging in sizes from a kilometer down to a few centimeters.”

In the past, studies of the lunar surface also confirmed the presence of water ice in its cratered polar regions. Further research indicated that outside of the larger craters, small “cold traps”could also contain ice. According to some models, accounting for these smaller deposits could effectively double estimates on the total amounts of ice on the Moon. Much the same could be true for Mercury.

But as Jim Head (who also served as Deutsch Ph.D. advisor for this study) indicated, this work also adds a new take to the critical question of where water in the Solar System came from. “One of the major things we want to understand is how water and other volatiles are distributed through the inner Solar System—including Earth, the Moon and our planetary neighbors,” he said. “This study opens our eyes to new places to look for evidence of water, and suggests there’s a whole lot more of it on Mercury than we thought.”

This shaded relief image shows the Moon’s Shackleton Crater, a 21-km-wide crater permanently shadowed crater near the lunar south pole. The crater’s interior structure is shown in false color based on data from NASA’s LRO probe. Credit: NASA

In addition to indicating the Solar System may be more watery than previously suspected, the presence of abundant ice on Mercury and the Moon has bolstered proposals for building outposts on these bodies. These outposts could be capable of turning local deposits water ice into hydrazine fuel, which would drastically reduce the costs of mounting long-range missions throughout the Solar System.

On the less-speculative side of things, this study also offers new insights into how the Solar System formed and evolved. If water is far more plentiful today than we knew, it would indicate that more was present during the early epochs of planetary formation, presumably when it was being distributed throughout the Solar System by asteroids and comets.

Further Reading: Brown University, Geophysical Research Letters

What is the Closest Planet to Earth?

A common question when looking at the Solar System and Earth’s place in the grand scheme of it is “which planet is closest to Earth?” Aside from satisfying a person’s general curiosity, this question is also of great importance when it comes to space exploration. And as humanity contemplates mounting manned missions to neighboring planets, it also becomes one of immense practicality.

If, someday, we hope to explore, settle, and colonize other worlds, which would make for the shortest trip? Invariable, the answer is Venus. Often referred to as “Earth’s Twin“, Venus has many similarities to Earth. It is a terrestrial planet, it orbits within the Sun’s habitable zone, and it has an atmosphere that is believed to have once been like Earth’s. Combined with its proximity to us, its little wonder we consider it our twin.

Venus’ Orbit:

Venus orbits the Sun at an average distance (semi-major axis) of 108,208,000 km (0.723 AUs), ranging between 107,477,000 km (0.718 AU) at perihelion and 108,939,000 km (0.728 AU) at aphelion. This makes Venus’ orbit the least eccentric of all the planets in the Solar System. In fact, with an eccentricity of less than 0.01, its orbit is almost circular.

Earth and Venus' orbit compared. Credit: Sky and Telescope
Earth and Venus’ orbit compared. Credit: Sky and Telescope

When Venus lies between Earth and the Sun, it experiences what is known as an inferior conjunction. It is at this point that it makes its closest approach to Earth (and that of any planet) with an average distance of 41 million km (25,476,219 mi). On average, Venus achieves an inferior conjunction with Earth every 584 days.

And because of the decreasing eccentricity of Earth’s orbit, the minimum distances will become greater over the next tens of thousands of years. So not only is it Earth’s closest neighbor (when it makes its closest approach), but it will continue to get cozier with us as time goes on!

Venus vs. Mars:

As Earth’s other neighbor, Mars also has a “close” relationship with Earth. Orbiting our Sun at an average distance of 227,939,200 km (1.52 AU), Mars’ highly eccentric orbit (0.0934) takes it from a distance of 206,700,000 km (1.38 AU) at perihelion to 249,200,000 km (1.666 AU) at aphelion. This makes its orbit one of the more eccentric in our Solar System, second only to Mercury

For Earth and Mars to be at their closest, both planets needs to be on the same side of the Sun, Mars needs to be at its closest distance from the Sun (perihelion), and Earth needs to be at its farthest (aphelion). This is known as opposition, a time when Mars appears as one of the brightest objects in the sky (as a red star), rivaling that of Venus or Jupiter.

The eccentricity in Mars' orbit means that it is . Credit: NASA
The eccentricity in Mars’ orbit means that it is . Credit: NASA

But even at this point, the distance between Mars and Earth ranges considerably. The closest approach to take place occurred back in 2003, when Earth and Mars were only 56 million km (3,4796,787 mi) apart. And this was the closest they’d been in 50,000 years. The next closest approach will take place on July 27th, 2018, when Earth and Mars will be at a distance of 57.6 million km (35.8 mi) from each other.

It has also been estimated that the closest theoretical approach would take place at a distance of 54.6 million km (33.9 million mi). However, no such approach has been documented in all of recorded history. One would be forced to wonder then why so much of humanity’s exploration efforts (past, present and future) are aimed at Mars. But when one considers just how horrible Venus’ environment is in comparison, the answer becomes clear.

Exploration Efforts:

The study and exploration of Venus has been difficult over the years, owing to the combination of its dense atmosphere and harsh surface environment. Its surface has been imaged only in recent history, thanks to the development of radar imaging. However, many robotic spacecraft and even a few landers have made the journey and discovered much about Earth’s closest neighbor.

The first attempts were made by the Soviets in the 1960s through the Venera Program. Whereas the first mission (Venera-1) failed due to loss of contact, the second (Venera-3) became the first man-made object to enter the atmosphere and strike the surface of another planet (on March 1st, 1966). This was followed by the Venera-4 spacecraft, which launched on June 12th, 1967, and reached the planet roughly four months later (on October 18th).

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA

NASA conducted similar missions under the Mariner program. The Mariner 2 mission, which launched on December 14th, 1962, became the first successful interplanetary mission and passed within 34,833 km (21,644 mi) of Venus’ surface. Between the late 60s and mid 70s, NASA conducted  several more flybys using Mariner probes – such as the Mariner 5 mission on Oct. 19th, 1967 and the Mariner 10 mission on Feb. 5th, 1974.

The Soviets launched six more Venera probes between the late 60s and 1975, and four additional missions between the late 70s and early  80s. Venera-5, Venera-6, and Venera-7 all entered Venus’ atmosphere and returned critical data to Earth. Venera 11 and Venera 12 detected Venusian electrical storms; and Venera 13 and Venera 14 landed on the planet and took the first color photographs of the surface. The program came to a close in October 1983, when Venera 15 and Venera 16 were placed in orbit to conduct mapping of the Venusian terrain with synthetic aperture radar.

By the late seventies, NASA commenced the Pioneer Venus Project, which consisted of two separate missions. The first was the Pioneer Venus Orbiter, which inserted into an elliptical orbit around Venus (Dec. 4th, 1978) to study its atmosphere and map the surface. The second, the Pioneer Venus Multiprobe, released four probes which entered the atmosphere on Dec. 9th, 1978, returning data on its composition, winds and heat fluxes.

Pioneer Venus
Artist’s impression of NASA’s Pioneer Venus Orbiter in orbit around Venus. Credit: NASA

In 1985, the Soviets participated in a collaborative venture with several European states to launch the Vega Program. This two-spacecraft initiative was intended to take advantage of the appearance of Halley’s Comet in the inner Solar System, and combine a mission to it with a flyby of Venus. While en route to Halley on June 11th and 15th, the two Vega spacecraft dropped Venera-style probes into Venus’ atmosphere to map its weather.

NASA’s Magellan spacecraft was launched on May 4th, 1989, with a mission to map the surface of Venus with radar. In the course of its four and a half year mission, Magellan provided the most high-resolution images to date of the planet, was able to map 98% of the surface and 95% of its gravity field. In 1994, at the end of its mission, Magellan was sent to its destruction into the atmosphere of Venus to quantify its density.

Venus was observed by the Galileo and Cassini spacecraft during flybys on their respective missions to the outer planets, but Magellan was the last dedicated mission to Venus for over a decade. It was not until October of 2006 and June of 2007 that the MESSENGER probe would conduct a flyby of Venus (and collect data) in order to slow its trajectory for an eventual orbital insertion of Mercury.

The Venus Express, a probe designed and built by the European Space Agency, successfully assumed polar orbit around Venus on April 11th, 2006. This probe conducted a detailed study of the Venusian atmosphere and clouds, and discovered an ozone layer and a swirling double-vortex at the south pole before concluding its mission in December of 2014. Since December 7th, 2015, Japan’s Akatsuki has been in a highly elliptical Venusian orbit.

Because of its hostile surface and atmospheric conditions, Venus has proven to be a tough nut to crack, despite its proximity to Earth. In spite of that, NASA, Roscosmos, and India’s ISRO all have plans for sending additional missions to Venus in the coming years to learn more about our twin planet. And as the century progresses, and if certain people get their way, we may even attempt to send human colonists there!

We have written many articles about Earth and its closest neighbor here at Universe Today. Here’s The Planet Venus, Venus: 50 Years Since Our First Trip, And We’re Going Back, Interesting Facts About Venus, Exploring Venus By Airship, Colonizing Venus With Floating Cities, and How Do We Terraform Venus?

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

Astronomy Cast also has an interesting episode on the subject. Listen here, Episode 50: Venus.

Dark Stains on Mercury Reveal Its Ancient Crust

Ever since the MESSENGER spacecraft entered orbit around Mercury in 2011, and indeed even since Mariner 10‘s flyby in 1974, peculiar “dark spots” observed on the planet’s surface have intrigued scientists as to their composition and origin. Now, thanks to high-resolution spectral data acquired by MESSENGER during the last few months of its mission, researchers have confirmed that Mercury’s dark spots contain a form of carbon called graphite, excavated from the planet’s original, ancient crust.

Continue reading “Dark Stains on Mercury Reveal Its Ancient Crust”

The Next Generation of Exploration: The DAVINCI Spacecraft

It’s no secret that there has been a resurgence in interest in space exploration in recent years. Much of the credit for this goes to NASA’s ongoing exploration efforts on Mars, which in the past few years have revealed things like organic molecules on the surface, evidence of flowing water, and that the planet once had a denser atmosphere –  all of which indicate that the planet may have once been hospitable to life.

But when it comes to the future, NASA is looking beyond Mars to consider missions that will send missions to Venus, near-Earth objects, and a variety of asteroids. With an eye to Venus, they are busy investigating the possibility of sending the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging (DAVINCI) spacecraft to the planet by the 2020s.

Led by Lori Glaze of the Goddard Spaceflight Center, the DAVINCI descent craft would essentially pick up where the American and Soviet space programs left off with the Pioneer and Venera Programs in the 1970s and 80s. The last time either country sent a probe into Venus’ atmosphere was in 1985, when the Soviet probes Vega 1 and 2 both orbited the planet and released a balloon-supported aerobot into the upper atmosphere.

Model of the Vega 1 solar system probe bus and landing apparatus (model) - Udvar-Hazy Center, Dulles International Airport, Chantilly, Virginia, USA. Credit: historicspacecraft.com
Model of the Vega 1 probe and landing apparatus at the Udvar-Hazy Center, Dulles International Airport, Chantilly, Virginia. Credit: historicspacecraft.com

These probes both remained operational for 46 hours and discovered just how turbulent and powerful Venus’ atmosphere was. In contrast, the DAVINCI probe’s mission will be to study both the atmosphere and surface of Venus, and hopefully shed some light on some of the planet’s newfound mysteries. According to the NASA release:

“DAVINCI would study the chemical composition of Venus’ atmosphere during a 63-minute descent. It would answer scientific questions that have been considered high priorities for many years, such as whether there are volcanoes active today on the surface of Venus and how the surface interacts with the atmosphere of the planet.”

These studies will attempt to build upon the data obtained by the Venus Express spacecraft, which in 2008/2009 noted the presence of several infrared hot spots in the Ganis Chasma region near the the shield volcano of Maat Mons (shown below). Believed to be due to volcanic eruptions, this activity was thought to be responsible for significant changes that were noted in the sulfur dioxide (SO²) content in the atmosphere at the time.

What’s more, the Pioneer Venus spacecraft – which studied the planet’s atmosphere from 1978 until its orbit decayed in 1992 – noted a tenfold decreased in the density of SO² at the cloud tops, which was interpreted as a decline following an episode of volcanogenic upwelling from the lower atmosphere.

3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission.
3-D perspective of the Venusian volcano, Maat Mons, generated from radar data from NASA’s Magellan mission. Credit: NASA/JPL

Commonly associated with volcanic activity here on Earth, SO² is a million times more abundant in Venus’ atmosphere, where it helps to power the runaway greenhouse effect that makes the planet so inhospitable. However, any SO² released into Venus’ atmosphere is also short-lived, being broken down by sunlight within a matter of days.

Hence, any significant changes in SO² levels in the upper atmosphere must have been a recent addition, and some scientists believe that the spike observed in 2008/2009 was due to a large volcano (or several) erupting. Determining whether or not this is the case, and whether or not volcanic activity plays an active role in the composition of Venus’s thick atmosphere, will be central to DAVINCI’s mission.

Along with four other mission concepts, DAVINCI was selected as a semifinalist for the NASA Discovery Program‘s latest calls for proposed missions. Every few years, the Discovery Program – a low-cost planetary missions program that is managed by the JPL’s Planetary Science Division – puts out a call for missions with an established budget of around $500 million (not counting the cost of launch or operation).

The latest call for submissions took place in February 2014, as part of the Discovery Mission 13. At the time, a total of 27 teams threw their hats into the ring to become part of the next round of space exploration missions. Last Wednesday, September 30th, 2015, five semifinalists were announced, one (or possibly two) of which will be chosen as the winner(s) by September 2016.

Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter (MRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Credit: JPL/NASA
Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander, which was selected as part of the Discovery Programs 2010 call for submissions and will be launched by 2016. Credit: JPL/NASA

These finalists will receive $3 million in federal grants for detailed concept studies, and the mission (or missions) that are ultimately chosen will be launched by December 31st, 2021. The Discovery Program began back in 1992, and launched its first mission- the Mars Pathfinder – in 1996. Other Discovery missions include the NEAR Shoemaker probe that first orbited an asteroid, and the Stardust-NExT project, which returned samples of comet and interstellar dust to Earth.

NASA’s MESSENGER spacecraft, the planet-hunting Kepler telescope, and the Dawn spacecraft were also developed and launched under the Discovery program. The winning proposal of the Discovery Program’s 12th mission, which was issued back in 2010, was the InSight Mars lander. Set to launch in March of 2016, the lander will touch down on the red planet, deploy instruments to the planet’s interior, and measure its seismic activity.

NASA hopes to infuse the next mission with new technologies, offering up government-furnished equipment with incentives to sweeten the deal for  each proposal. These include a supply of deep space optical communications system that are intended to test new high-speed data links with Earth. Science teams that choose to incorporate the laser telecom unit will be entitled to an extra $30 million above their $450 million cost cap.

If science teams wish to send entry probes into the atmospheres of Venus or Saturn, they will need a new type of heat shield. Hence, NASA’s solicitation includes a provision to furnish a newly-developed 3D-woven heat shield with a $10 million incentive. A deep space atomic clock is also available with a $5 million bonus, and NASA has offered to provide xenon ion thrusters and radioisotope heater units without incentives.

As with previous Discovery missions, NASA has stipulated that the mission must use solar power, limiting mission possibilities beyond Jupiter and Saturn. Other technologies may include the NEXT ion thruster and/or re-entry technology.

Weekly Space Hangout – May 1, 2015: Prof. Coel Hellier, WASP & SuperWASP

Host: Fraser Cain (@fcain)
Special Guest: Prof. Coel Hellier, Professor of Astrophysics at Keele University, UK, to talk about WASP & SuperWASP.

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – May 1, 2015: Prof. Coel Hellier, WASP & SuperWASP”

Mercury MESSENGER Mission Concludes with a Smashing Finale!

The planet Mercury has a brand new 52-foot-wide crater. At 3:26 p.m.  EDT this afternoon, NASA’s MESSENGER spacecraft bit the Mercurial dust, crashing into the planet’s surface at over 8,700 mph just north of the Shakespeare Basin. Because the impact happened out of sight and communication with the Earth, the MESSENGER team had to wait about 30 minutes after the predicted impact to announce the mission’s end. 

NASA estimates that the MESSENGER spacecraft would crash into Mercury this afternoon at 3:26 p.m. EDT near the 30-mile-wide crater Janacek on the opposite side of the planet from Earth. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
NASA predicted that the MESSENGER spacecraft would crash into Mercury this afternoon at 3:26 p.m. EDT near the 30-mile-wide crater Janacek  and the large Shakespeare Basin on the opposite side of the planet from Earth. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Even as MESSENGER faced its demise, it continued to take pictures and gather data right up until impact. The first-ever space probe to orbit the Solar System’s innermost planet, MESSENGER has completed 4,103 orbits as of this morning. Not only has it imaged the planet in great detail, but using it seven science instruments, scientists have gathered data on the composition and structure of Mercury’s crust, its geologic history, the nature of its magnetic field and rarefied sodium-calcium atmosphere, and the makeup of its iron core and icy materials near its poles.

Color-coded view of Carnegie Rupes (ridge) with low elevations in blue and high in red. The ridge formed as the Mercury's interior cooled, resulting in the overall shrinking of the planet. Parts of the landscape lapped over other parts as the planet shrunk. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Color-coded view of Carnegie Rupes at left with low elevations in blue and high in red. The ridge formed as Mercury’s interior cooled, resulting in the overall shrinking of the planet. Parts of the landscape lapped over other parts as the planet shrunk. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Images show those ubiquitous craters but also features that set its moonlike landscape apart from the Moon including volcanic plains, tectonic landforms that indicate the planet shrank as its interior cooled and mysterious mouse-like nibbles called “hollows”, where surface material may be vaporizing in sunlight leaving behind a network of holes. To learn more about the mission’s “greatest hits”, check out its Top Ten discoveries or pay a visit to the Gallery.

The rounded, depressions, called "hollows", are a fascinating discovery of MESSENGER's orbital mission and may have been formed by vaporization of something in the material when exposed by the Raditladi impact. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
The rounded depressions, called “hollows”, are a fascinating discovery of MESSENGER’s orbital mission and may have been formed by vaporization of materials in the surface when exposed by the Raditladi impact. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

MESSENGER mission controllers conducted the last of six planned maneuvers on April 24 to raise the spacecraft’s minimum altitude sufficiently to extend orbital operations and further delay the probe’s inevitable impact onto Mercury’s surface, but it’s now out of propellant. Without the ability to counteract the Sun’s gravity, which is slowly pulling the craft closer to Mercury’s surface, the team prepared for the inevitable.

False color images of Mercury taken with MESSENGER's Mercury Atmosphere and Surface Composition Spectrometer (MASCS) in everything from infrared to ultraviolet light reveal colorful differences in terrain and surface mineralogy. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
False color images of Mercury taken with MESSENGER’s Mercury Atmosphere and Surface Composition Spectrometer (MASCS) in everything from infrared to ultraviolet light reveal colorful differences in terrain and surface mineralogy. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The spacecraft actually ran out of propellant a while back, but controllers realized they could re-purpose a stock of helium, originally carried to pressurize the fuel, for a few final blasts to keep it alive and doing science right up to the last minute. During its final hours today, MESSENGER will be shooting and sending back as many new pictures as possible the same way you’d squeeze in one last shot of the Grand Canyon before departing for home. It’s also holding hundreds of older photos in its memory chip and will send as many of those as it can before the final deadline.

Farewell MESSENGER! Artist view of the spacecraft orbiting the innermost planet Mercury. Credit: NASA
Farewell MESSENGER! Artist view of the spacecraft in orbit about Mercury. Credit: NASA

“Operating a spacecraft in orbit about Mercury, where the probe is exposed to punishing heat from the Sun and the planet’s dayside surface as well as the harsh radiation environment of the inner heliosphere (Sun’s sphere of influence), would be challenge enough,” said Principal Investigator Sean Solomon, MESSENGER principal investigator. “But MESSENGER’s mission design, navigation, engineering, and spacecraft operations teams have fought off the relentless action of solar gravity, made the most of every usable gram of propellant, and devised novel ways to modify the spacecraft trajectory never before accomplished in deep space.”

Face northwest starting about 45 minutes after sunset to look for Mercury tonight. It will lie about two fists below Venus and only 1.5 from the Pleiades star cluster. Source: Stellarium
Face northwest starting about 45 minutes after sunset to find Mercury tonight. It’s located about two fists to the lower right of Venus and just 1.5° below the Pleiades star cluster. Use binoculars to see the star cluster more easily. Source: Stellarium

Ground-based telescopes won’t be able to spy MESSENGER’s impact crater because of its small size, but the BepiColombo Mercury probe, due to launch in 2017 and arrive in orbit at Mercury in 2024, should be able to get a glimpse. Speaking of spying, you can see the planet Mercury tonight (and for the next week or two), when it will be easily visible low in the northwestern sky starting about 45 minutes after sundown. The planet coincidentally makes its closest approach to the Pleiades star cluster tonight and tomorrow.

Use the occasion to wish MESSENGER a fond farewell.

The End is Near: NASA’s MESSENGER Now Running on Fumes

For more than four years NASA’s MESSENGER spacecraft has been orbiting our solar system’s innermost planet Mercury, mapping its surface and investigating its unique geology and planetary history in unprecedented detail. But the spacecraft has run out of the fuel needed to maintain its extremely elliptical – and now quite low-altitude – orbit, and the Sun will soon set on the mission when MESSENGER makes its fatal final dive into the planet’s surface at the end of the month.

On April 30 MESSENGER will impact Mercury, falling down to its Sun-baked surface and colliding at a velocity of 3.9 kilometers per second, or about 8,700 mph. The 508-kilogram spacecraft will create a new crater on Mercury about 16 meters across.

The impact is estimated to occur at 19:25 UTC, which will be 3:25 p.m. at the John Hopkins University Applied Physics Lab in Laurel, Maryland, where the MESSENGER operations team is located. Because the spacecraft will be on the opposite side of Mercury as seen from Earth the impact site will not be in view.

Postcards from the (Inner) Edge: MESSENGER Images of Mercury

MESSENGER captures image of curious "hollows" around a crater peak
MESSENGER image of “hollows” around a crater’s central peak – one of the many unique discoveries the mission made about Mercury. Read more here.

But while it’s always sad to lose a dutiful robotic explorer like MESSENGER, its end is bittersweet; the mission has been more than successful, answering many of our long-standing questions about Mercury and revealing features of the planet that nobody even knew existed. The data MESSENGER has returned to Earth – over ten terabytes of it – will be used by planetary scientists for decades in their research on the formation of Mercury as well as the Solar System as a whole.

“For the first time in history we now have real knowledge about the planet Mercury that shows it to be a fascinating world as part of our diverse solar system,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate. “While spacecraft operations will end, we are celebrating MESSENGER as more than a successful mission. It’s the beginning of a longer journey to analyze the data that reveals all the scientific mysteries of Mercury.”

View the top ten science discoveries from MESSENGER here.

On April 6 MESSENGER used up the last vestiges of the liquid hydrazine propellant in its tanks, which it needed to make course corrections to maintain its orbit. But the tanks also hold gaseous helium as a pressurizer, and system engineers figured out how to release that gas through the complex hydrazine nozzles and keep MESSENGER in orbit for a few more weeks.

Earth and the Moon imaged by the MESSENGER spacecraft on Oct. 8, 2014
Earth and the Moon imaged by MESSENGER on Oct. 8, 2014. Credit: NASA/JHU APL/Carnegie Institution of Washington.

On April 24, though, even those traces of helium will be exhausted after a sixth and final orbit correction maneuver. From that point on MESSENGER will be coasting – out of fuel, out of fumes, and out of time.

“Following this last maneuver, we will finally declare MESSENGER out of propellant, as this maneuver will deplete nearly all of our remaining helium gas,” said Mission Systems Engineer Daniel O’Shaughnessy. “At that point, the spacecraft will no longer be capable of fighting the downward push of the Sun’s gravity.

“After studying the planet intently for more than four years, MESSENGER’s final act will be to leave an indelible mark on Mercury, as the spacecraft heads down to an inevitable surface impact.”

Read more: Five Mercury Secrets Revealed by MESSENGER

But MESSENGER scientists and engineers can be proud of the spacecraft that they built, which has proven itself more than capable of operating in the inherently challenging environment so close to our Sun.

“MESSENGER had to survive heating from the Sun, heating from the dayside of Mercury, and the harsh radiation environment in the inner heliosphere, and the clearest demonstration that our innovative engineers were up to the task has been the spacecraft’s longevity in one of the toughest neighborhoods in our Solar System,” said MESSENGER Principal Investigator Sean Solomon. “Moreover, all of the instruments that we selected nearly two decades ago have proven their worth and have yielded an amazing series of discoveries about the innermost planet.”

True color image of Mercury (MESSENGER)
True-color image of Mercury made from MESSENGER data. Credit: NASA/JHU APL/Carnegie Institution of Washington.

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft launched on August 3, 2004, and traveled over six and a half years before entering orbit about Mercury on March 18, 2011 – the first spacecraft ever to do so. Learn more about the mission’s many discoveries here.

The video below was released in 2013 to commemorate MESSENGER’s second year in orbit and highlights some of the missions important achievements.

Source: NASA and JHUAPL

Are you an educator? Check out some teaching materials and shareables on the MESSENGER community page here.

Weekly Space Hangout – March 20, 2015: Lee Billings’ Five Billion Years of Solitude

Host: Fraser Cain (@fcain)
Special Guest: Author Lee Billings, discussing his book “Five Billion Years of Solitude”(@LeeBillings / leebillings.com/)
Guests:
Dr. Pamela Gay (cosmoquest.org / @starstryder)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Brian Koberlein (@briankoberlein)
Continue reading “Weekly Space Hangout – March 20, 2015: Lee Billings’ Five Billion Years of Solitude”

Get a Change of View of Mercury’s North Pole

It’s always good to get a little change of perspective, and with this image we achieve just that: it’s a view of Mercury’s north pole projected as it might be seen from above a slightly more southerly latitude. Thanks to the MESSENGER spacecraft, with which this image was originally acquired, as well as the Arecibo Observatory here on Earth, scientists now know that these polar craters contain large deposits of water ice – which may seem surprising on an airless and searing-hot planet located so close to the Sun but not when you realize that the interiors of these craters never actually receive sunlight.

The locations of ice deposits are shown in the image in yellow. See below for a full-sized version.

Perspective view of Mercury's north pole made from MESSENGER MDIS data.
Perspective view of Mercury’s north pole made from MESSENGER MDIS images and Arecibo Observatory data. (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

The five largest ice-filled craters in this view are (from front to back) the 112-km-wide Prokofiev and the smaller Kandinsky, Tolkien, Tryggvadottir, and Chesterton craters. A mosaic of many images acquired by MESSENGER’s Mercury Dual Imaging Sustem (MDIS) instrument during its time in orbit, you would never actually see a view of the planet’s pole illuminated like this in real life but orienting it this way helps put things into…well, perspective.

Radar observations from Arecibo showing bright areas on Mercury's north pole
Radar observations from Arecibo showing bright areas on Mercury’s north pole

Radar-bright regions in Mercury’s polar craters have been known about since 1992 when they were first imaged from the Arecibo Observatory in Puerto Rico. Located in areas of permanent shadow where sunlight never reaches (due to the fact that Mercury’s axial tilt is a mere 2.11º, unlike Earth’s much more pronounced 23.4º slant) they have since been confirmed by MESSENGER observations to contain frozen water and other volatile materials.

Read more: Ice Alert! Mercury’s Deposits Could Tell Us More About How Water Came To Earth

Similarly-shadowed craters on our Moon’s south pole have also been found to contain water ice, although those deposits appear different in composition, texture, and age. It’s suspected that some of Mercury’s frozen materials may have been delivered later than those found on the Moon, or are being restored via an ongoing process. Read more about these findings here.

Explore Mercury’s shadowed craters with the Water Ice Data Exploration (WIDE) app

In orbit around Mercury since 2011, MESSENGER is now nearing the end of its operational life. Engineers have figured out a way to extend its fuel use for an additional month, possibly delaying its inevitable descent until April, but even if this maneuver goes as planned the spacecraft will be meeting Mercury’s surface very soon.

Source: MESSENGER

Mercury Spacecraft’s 2015 Death Watch Could Go One More Month

If all goes well — and there’s no guarantee of this — NASA’s venerable Mercury sentinel may have an extra month of life left in it before it goes on a death plunge to the planet’s surface. Managers think they have found a way to stretch its fuel to allow the spacecraft to fly until April, measuring the planet’s magnetic field before falling forever.

Success will partially depend on a maneuver that will take place on Jan. 21, when MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) will raise its minimum altitude. But moreover, pushing the impact back to April will be the first extended test of using helium as a propellant in hydrazine thrusters, components that were not actually designed to get this done. But the team says it is possible, albeit less efficiently.

“Typically, when … liquid propellant is completely exhausted, a spacecraft can no longer make adjustments to its trajectory,” stated Dan O’Shaughnessy, a mission systems engineer with the Johns Hopkins University Applied Physics Laboratory.

“However, gaseous helium was used to pressurize MESSENGER’s propellant tanks, and this gas can be exploited to continue to make small adjustments to the trajectory.”

A crater on Mercury at the edge of the larger Oskison crater located in the plains north of Caloris basin. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A crater on Mercury at the edge of the larger Oskison crater located in the plains north of Caloris basin. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

However long the mission does end up lasting, MESSENGER has shown us some unexpected things about the planet that is closest to the Sun. Turns out that water ice likely lies in some of the shadowed craters on its surface. And that organics, which were possibly delivered to Earth via comets and asteroids, are also on Mercury.

Atmospheric changes have been seen in the tenuous gases surrounding Mercury, showing a definite influence from the nearby Sun. And even the magnetic field lines on the planet are influenced by charged particles from our closest star.

And with MESSENGER viewing the planet from close-up, NASA and Johns Hopkins hope to learn more about volcanic flows, how crater walls are structured, and other features that you can see on the airless planet. Despite a 10-year mission and more than three years orbiting Mercury, it’s clear from MESSENGER that there is so much more to learn.

Source: Johns Hopkins University Applied Physics Laboratory