## How Much Stuff is in a Light Year?

The Milky Way is an extremely big place. Measured from end to end, our galaxy in an estimated 100,000 to 180,000 light years (31,000 – 55,000 parsecs) in diameter. And it is extremely well-populated, with an estimated 100 to 400 million stars contained within. And according to recent estimates, it is believed that there are as many as 100 billion planets in the Milky Way. And our galaxy is merely one of trillions within the Universe.

So if we were to break it down, just how much matter would we find out there? Estimating how much there is overall would involve some serious math and incredible figures. But what about a single light year? As the most commonly-used unit for measuring the distances between stars and galaxies, determining how much stuff can be found within a single light year (on average) is a good way to get an idea of how stuff is out there.

## Light Year:

Even though the name is a little confusing, you probably already know that a light year is the distance that light travels in the space of a year. Given that the speed of light has been measured to 299,792, 458 m/s (1080 million km/h; 671 million mph), the distance light travels in a single year is quite immense. All told, a single light year works out to 9,460,730,472,580.8 kilometers (5,878,625,373,183.6 mi).

So to determine how much stuff is in a light year, we need to take that distance and turn it into a cube, with each side measuring one light year in length. Imagine that giant volume of space (a little challenging for some of us to get our heads around) and imagine just how much “stuff” would be in there. And not just “stuff”, in the sense of dust, gas, stars or planets, either. How much nothing is in there, as in, the empty vacuum of space?

There is an answer, but it all depends on where you put your giant cube. Measure it at the core of the galaxy, and there are stars buzzing around all over the place. Perhaps in the heart of a globular cluster? In a star forming nebula? Or maybe out in the suburbs of the Milky Way? There’s also great voids that exist between galaxies, where there’s almost nothing.

## Density of the Milky Way:

There’s no getting around the math in this one. First, let’s figure out an average density for the Milky Way and then go from there. Its about 100,000 to 180,000 light-years across and 1000 light-years thick. According to my buddy and famed astronomer Phil Plait (of Bad Astronomy), the total volume of the Milky Way is about 8 trillion cubic light-years.

And the total mass of the Milky Way is 6 x 1042 kilograms (that’s 6,000 trillion trillion trillion metric tons or 6,610 trillion trillion trillion US tons). Divide those together and you get 8 x 1029 kilograms (800 trillion trillion metric tons or 881.85 trillion trillion US tons) per light year. That’s an 8 followed by 29 zeros. This sounds like a lot, but its actually the equivalent of 0.4 Solar Masses – 40% of the mass of our Sun.

In other words, on average, across the Milky Way, there’s about 40% the mass of the Sun in every cubic light year. But in an average cubic meter, there’s only about 950 attograms, which is almost one femtogram (a quadrillionth of a gram of matter), which is pretty close to nothing. Compare this to air, which has more than a kilogram of mass per cubic meter.

To be fair, in the densest regions of the Milky Way – like inside globular clusters – you can get densities of stars with 100, or even 1000 times greater than our region of the galaxy. Stars can get as close together as the radius of the Solar System. But out in the vast interstellar gulfs between stars, the density drops significantly. There are only a few hundred individual atoms per cubic meter in interstellar space.

And in the intergalactic voids; the gulfs between galaxies, there are just a handful of atoms per meter. Like it or not, much of the Universe is pretty close to being empty space, with just trace amounts of dust or gas particles to be found between all the stars, galaxies, clusters and super clusters.

So how much stuff is there in a light year? It all depends on where you look, but if you spread all the matter around by shaking the Universe up like a snow globe, the answer is very close to nothing.

We have written many interesting articles about the Milky Way Galaxy here at Universe Today. Here’s 10 Interesting Facts About the Milky Way, How Big is the Milky Way?, How Many Stars are There in the Milky Way?, Where is the Earth Located in the Milky Way?, How Far is a Light Year?, and How Far Does Light Travel in a Year?

For more information, check out How many teaspoons are there in a cubic light year? at HowStuffWorks

Astronomy Cast also has a good episode on the subject. Here’s Episode 99: The Milky Way

Sources:

## What are Molecules?

For millennia, scientists have pondered the mystery of life – namely, what goes into making it? According to most ancient cultures, life and all existence was made up of the basic elements of nature – i.e. Earth, Air, Wind, Water, and Fire. However, in time, many philosophers began to put forth the notion that all things were composed of tiny, indivisible things that could neither be created nor destroyed (i.e. particles).

However, this was a largely philosophical notion, and it was not until the emergence of atomic theory and modern chemistry that scientists began to postulate that particles, when taken in combination, produced the basic building blocks of all things. Molecules, they called them, taken from the Latin “moles” (which means “mass” or “barrier”). But used in the context of modern particle theory, the term refers to small units of mass.

## Definition:

By its classical definition, a molecule is the smallest particle of a substance that retains the chemical and physical properties of that substance. They are composed of two or more atoms, a group of like or different atoms held together by chemical forces.

It may consist of atoms of a single chemical element, as with oxygen (O2), or of different elements, as with water (H2O). As components of matter, molecules are common in organic substances (and therefore biochemistry) and are what allow for life-giving elements, like liquid water and breathable atmospheres.

## Types of Bonds:

Molecules are held together by one of two types of bonds – covalent bonds or ionic bonds. A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. And the bond they form, which is the result of a stable balance of attractive and repulsive forces between atoms, is known as covalent bonding.

Ionic bonding, by contrast, is a type of chemical bond that involves the electrostatic attraction between oppositely charged ions. The ions involved in this kind of bond are atoms that have lost one or more electrons (called cations), and those that have gained one or more electrons (called anions). In contrast to covalence, this transfer is termed electrovalance.

In the simplest of forms, covelant bonds take place between a metal atom (as the cation) and a nonmetal atom (the anion), leading to compounds like Sodium Chloride (NaCl) or Iron Oxide (Fe²O³) – aka. salt and rust. However, more complex arrangements can be made too, such as ammonium (NH4+) or hydrocarbons like methane (CH4) and ethane (H³CCH³).

## History of Study

Historically, molecular theory and atomic theory are intertwined. The first recorded mention of matter being made up of “discreet units” began in ancient India where practitioners of Jainism espoused the notion that all things were composed of small indivisible elements that combined to form more complex objects.

In ancient Greece, philosophers Leucippus and Democritus coined the term “atomos” when referring to the “smallest indivisible parts of matter”, from which we derive the modern term atom.

Then in 1661, naturalist Robert Boyle argued in a treatise on chemistry – titled “The Sceptical Chymist“- that matter was composed of various combinations of “corpuscules”, rather than earth, air, wind, water and fire. However. these observations were confined to the field of philosophy.

It was not until the late 18th and early 19th century when Antoine Lavoisier’s Law of Conservation of Mass and Dalton’s Law of Multiple Proportions brought atoms and molecules into the field of hard science. The former proposed that elements are basic substances that cannot be broken down further while the latter proposed that each element consists of a single, unique type, of atom and that these can join together to form chemical compounds.

A further boon came in 1865 when Johann Josef Loschmidt measured the size of the molecules that make up air, thus giving a sense of scale to molecules. The invention of the Scanning Tunneling Microscope (STM) in 1981 allowed for atoms and molecules to be observed directly for the first time as well.

Today, our concept of molecules is being refined further thanks to ongoing research in the fields of quantum physics, organic chemistry and biochemistry. And when it comes to the search for life on other worlds, an understanding of what organic molecules need in order to emerge from the combination of chemical building blocks, is essential.

We have written many interesting articles about molecules for Universe Today. Here’s Molecules From Space May Have Affected Life On Earth, Prebiotic Molecules May Form in Exoplanet Atmospheres, Organic Molecules Found Outside our Solar System, ‘Ultimate’ Prebiotic Molecules Found in Interstellar Space.

For more information, check out Encyclopaedia Britannica‘s page on molecules.

We’ve also recorded an entire episode of Astronomy Cast all about Molecules in Space. Listen here, Episode 116: Molecules in Space.

Sources:

## Earth May Be “Hairy” with Dark Matter

I’m losing mine, but the Solar System may be way hairier than we ever thought, with thick crops of filamentary dark matter streaming through Earth’s core and back out again even as you read this.

A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA’s Jet Propulsion Laboratory proposes the existence of long filaments of dark matter, or “hairs.” Dark matter is a hypothetical form of matter that emits no light, thereby resisting our attempts to see and photograph it, but based on many observations of its gravitational pull on ordinary matter, astronomers have measured the amount of dark matter to an accuracy of 1%.

Massive amounts of it formed a tangled web of filaments after the Big Bang and ensuing epoch of cosmic inflation that served as sites for the “condensation” of  bright matter galaxies. We likely owe our existence to this stuff, whatever it is, which has yet to be directly detected. Along with dark energy, it remains one of the greatest mysteries of our age.

As if that weren’t enough, dark matter comprises 85% of all the known matter reserves in the universe and 27% of the entire matter-energy cosmic budget. Ordinary stuff like stars, baseball bats and sushi constitute just 4.9% of the the total. The leading theory is that dark matter is “cold,” meaning it moves slowly compared to the speed of light, and it’s “dark” because it doesn’t produce or interact with light. The axion, a hypothetical elementary particle, appears to be good candidate for dark matter as do WIMPs or weakly interacting massive particles, but again, these exist only on paper.

According to calculations done in the 1990s and simulations performed in the last decade, dark matter forms “fine-grained streams” of particles that move at the same velocity and orbit galaxies such as ours. Streams can be much larger than our Solar System and criss-cross the galaxy. Prézeau compares the formation of fine-grained streams of dark matter to mixing chocolate and vanilla ice cream. Swirl a scoop of each together a few times and you get a mixed pattern, but you can still see the individual colors.

“When gravity interacts with the cold dark matter gas during galaxy formation, all particles within a stream continue traveling at the same velocity,” Prézeau said.

But a different scenario unfolds when a stream passes by an obstacle like the Earth or a moon. Prézeau used computer simulations to discover that when dark matter stream passes through a planet — dark matter passes right through us unlike ordinary matter — it’s focused into an ultra-dense filament or hair. Not a solo strand but a luxuriant crop bushy as a brewer’s beard.

According to Prézeau, hairs emerging from planets have both “roots,” the densest concentration of dark matter particles in the hair, and “tips,” where the hair ends. When particles of a dark matter stream pass through Earth’s core, they focus at the “root” of a hair, where the density of the particles is about a billion times more than average. The root of such a hair should be around 600,000 miles (1 million km) away from the surface, or a little more than twice as far as the moon. The stream particles that graze Earth’s surface will form the tip of the hair, about twice as far from Earth as the hair’s root.

A stream passing through more massive Jupiter would have roots a trillion times denser than the original stream. Naturally, these dense concentrations would make ideal places to send a probe to study dark matter right here in the neighborhood.

The computer simulations reveal that changes in Earth’s density from inner core to outer core to mantle and crust are reflected in the shape of the hairs, showing up as “kinks” that correspond to transitions from one zone to the next. If it were possible to get our hands on this kind of information, we could use it to map to better map Earth’s interior and even the depth of oceans inside Jupiter’s moon Europa and Saturn’s Enceladus.

Earth getting its roots done. What’ll they think of next?

## How Massive Can Black Holes Get?

We talk about stellar mass and supermassive black holes. What are the limits? How massive can these things get?

Without the light pressure from nuclear fusion to hold back the mass of the star, the outer layers compress inward in an instant. The star dies, exploding violently as a supernova.

All that’s left behind is a black hole. They start around three times the mass of the Sun, and go up from there. The more a black hole feeds, the bigger it gets.

Terrifyingly, there’s no limit to much material a black hole can consume, if it’s given enough time. The most massive are ones found at the hearts of galaxies. These are the supermassive black holes, such as the 4.1 million mass nugget at the center of the Milky Way. Astronomers figured its mass by watching the movements of stars zipping around the center of the Milky Way, like comets going around the Sun.

There seems to be supermassive black holes at the heart of every galaxy we can find, and our Milky Way’s black hole is actually puny in comparison. Interstellar depicted a black hole with 100 million times the mass of the Sun. And we’re just getting started.

The giant elliptical galaxy M87 has a black hole with 6.2 billion times the mass of the Sun. How can astronomers possibly know that? They’ve spotted a jet of material 4,300 light-years long, blasting out of the center of M87 at relativistic speeds, and only black holes that massive generate jets like that.

Most recently, astronomers announced in the Journal Nature that they have found a black hole with about 12 billion times the mass of the Sun. The accretion disk here generates 429 trillion times more light than the Sun, and it shines clear across the Universe. We see the light from this region from when the Universe was only 6% into its current age.

Somehow this black hole went from zero to 12 billion times the mass of the Sun in about 875 million years. Which poses a tiny concern. Such as how in the dickens is it possible that a black hole could build up so much mass so quickly? Also, we’re seeing it 13 billion years ago. How big is it now? Currently, astronomers have no idea. I’m sure it’s fine. It’s fine right?

We’ve talked about how massive black holes can get, but what about the opposite question? How teeny tiny can a black hole be?

Astronomers figure there could be primordial black holes, black holes with the mass of a planet, or maybe an asteroid, or maybe a car… or maybe even less. There’s no method that could form them today, but it’s possible that uneven levels of density in the early Universe might have compressed matter into black holes.

Those black holes might still be out there, zipping around the Universe, occasionally running into stars, planets, and spacecraft and interstellar picnics. I’m sure it’s the stellar equivalent of smashing your shin on the edge of the coffee table.

Astronomers have never seen any evidence that they actually exist, so we’ll shrug this off and choose to pretend we shouldn’t be worrying too much. And so it turns out, black holes can get really, really, really massive. 12 billion times the mass of the Sun massive.

What part about black holes still make you confused? Suggest some topics for future episodes of the Guide to Space in the comments below.

## Could We Make Artificial Gravity?

It’s a staple of scifi, and a requirement if we’re going to travel long-term in space. Will we ever develop artificial gravity?

It’s safe to say we’ve spent a significant amount of our lives consuming science fiction.

Berks, videos, movies and games.

Science fiction is great for the imagination, it’s rich in iron and calcium, and takes us to places we could never visit. It also helps us understand and predict what might happen in the future: tablet computers, cloning, telecommunication satellites, Skype, magic slidey doors, and razors with 5 blades.

These are just some of the predictions science fiction has made which have come true.

Then there are a whole bunch of predictions that have yet to happen, but still might, Fun things like the climate change apocalypse, regular robot apocalypse, the giant robot apocalypse, the alien invasion apocalypse, the apocalypse apocalypse, comet apocalypse, and the great Brawndo famine of 2506.
Continue reading “Could We Make Artificial Gravity?”

## Astronomy Cast Ep. 382: Degenerate Matter

In some of the most extreme objects in the Universe, white dwarfs and neutron stars, matter gets strange, transforming into a material that physicists call “degenerate matter”. Let’s learn what it is, how it forms.

## Is There a Mirror Universe?

Could there be a mirror universe, where everything is backwards – and everybody has goatees? How badly do you need to bend the laws of physics to make this happen?

One of the great mysteries in cosmology is why the Universe is mostly matter and not antimatter. If you want to learn more about that specific subject, you can click here and watch an episode all about that.

During the Big Bang, nearly equal amounts of matter and antimatter were created, and subsequently annihilated. Nearly equal. And so we’re left with a Universe made of matter.

But could there be antimatter stars out there? With antimatter planets in orbit. Could there be a backwards Universe that operates just like our regular Universe, but everything’s made of antimatter? And if it’s out there, does it have to be evil? Do they only know how to conquer? Does everyone, even the antimatter babies and ladies, have handsome goatees? How about sashes? I hear they’re big on sashes. OOH and daggers. Gold daggers with little teensy antimatter emeralds and rubies.

Antimatter, without the goatee, was theorized in 1928 by Paul Dirac, who realized that one implication of quantum physics was that you could get electrons that had a positive charge instead of a negative charge. They were discovered by Carl D. Anderson just 4 years later, which he named “positron” for positive electron.

We believe he was clearly snubbing Dirac, by not naming them the “Diracitron”, alternately they were saving that name for a giant Japanese robot.

These antiparticles are created through high energy particle collisions happening naturally in the Universe, or unnaturally inside our “laugh in the face of God and nature” particle accelerators. We can even detect the annihilation out there in the Universe where matter and antimatter crash into each other.

Physicists have discovered a range of anti-particles. Anti-protons, anti-neutrons, anti-hydrogen, anti-helium. To date, there’s been no evidence of any goatees or sashes. Naturally, they wondered what might happen if the balance of the Universe was flipped. What if we had a Universe made out of mostly antimatter? Would it still… you know, work? Could you have antimatter stars, antimatter planets, and even those antimatter people we mentioned?

When physics swap out matter for anti-matter in their equations, they call it charge conjugation. It turns out, no. If you reversed the charge of all the particles in the Universe, it wouldn’t evolve in the same way as our “plain old non-sashed” Universe.

To fix this problem, physicists considered the implications if you had an actual mirror Universe, where all the particles behaved as if they were mirror images of themselves. This sounds a little more in line with our “Through a mirror, darkly” goatee and sash every day festival universe. This is all the bits backwards. Spin, charge, velocity, the works. They called this parity inversion. So, would this work?

Again, it turns out that the answer is no. It would almost work out, but there’s a tendency for the weak nuclear force, the one the governs nuclear decay to violate this idea of parity inversion. Even in a mirror Universe, the weak nuclear force is left-handed. Dammit, weak nuclear force, get your act together, if not just for the sake of the costumes and cooler bridge lighting.

What if you reversed both the charge and the parity at the same time? What if you had antimatter in a mirror Universe? Physicists called this charge-parity symmetry, or CP symmetry.

In a dazzling experiment and absolute “what if” one-upmanship exercise by James Cronin and Val Fitch in 1964. They demonstrated that no, you can’t have a mirror-antimatter Universe evolve with our physical laws. This experiment won the Nobel Prize in 1980.

Physicists had one last trick up their sleeves. It turns out that if you reverse time itself as well as making everything out of antimatter and holding it up to a mirror, you get true symmetry. All the physical lays are preserved, and you’d get a Universe that would look exactly like our own.

It turns out we could live in a mirror Universe, as long as you were willing to reverse the charge of every particle and run time backwards. And if you did, it would be indistinguishable from the Universe we actually live in. Now, if you’ll excuse me, I think I need to call my tailor, I hear sashes are going to be huge this year.

So what do you think, do we live in the real Universe or the mirror Universe? Tell us in the comments below.

## How are Energy and Matter the Same?

As Einstein showed us, light and matter and just aspects of the same thing. Matter is just frozen light. And light is matter on the move. How does one become the other?

Albert Einstein’s most famous equation says that energy and matter are two sides of the same coin.
But what does that really mean? And how are equations famous? I like to believe equations can be famous in the way a work of art, or a philosophy can be famous. People can have awareness of the thing, and yet never have interacted with it. They can understand that it is important, and yet not understand why it’s so significant. Which is a little too bad, as this is really a lovely mind bending idea.

The origin of E=mc2 lies in special relativity. Light has the same speed no matter what frame of reference you are in. No matter where you are, or how fast you’re going. If you were standing still at the side of the road, and observed a car traveling at ¾ light speed, you would see the light from their headlights traveling away from them at ¼ the speed of light.

But the driver of the car would still see that the light moving ahead of them at the speed of light. This is only possible if their time appears to slow down relative to you, and you and the people in the car can no longer agree on how long a second would take to pass.

So the light appears to be moving away from them more slowly, but as they experience things more slowly it all evens out. This also affects their apparent mass. If they step on the gas, they will speed up more slowly than you would expect. It’s as if the car has more mass than you expect. So relativity requires that the faster an object moves, the more mass it appears to have. This means that somehow part of the energy of the car’s motion appears to transform into mass. Hence the origin of Einstein’s equation. How does that happen? We don’t really know. We only know that it does.

The same effect occurs with quantum particles, and not just with light. A neutron, for example, can decay into a proton, electron and anti-neutrino. The mass of these three particles is less than the mass of a neutron, so they each get some energy as well. So energy and matter are really the same thing. Completely interchangeable. And finally, Although energy and mass are related through special relativity, mass and space are related through general relativity. You can define any mass by a distance known as its Schwarzschild radius, which is the radius of a black hole of that mass. So in a way, energy, matter, space and time are all aspects of the same thing.

What do you think? Like E=mc2, what’s the most famous idea you can think of in physics?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

## Where’s All The Antimatter?

One of the biggest mysteries in the Universe is the fact there there’s matter, and not antimatter. Where did it all go?

When we look around, everything we can see is made of matter. For every type of matter from electrons, protons and quarks there is a similar type of matter known as antimatter. So why aren’t there piles of antimatter rocks, cars and chocolate bars just lying around? Why does Scotty always have a little extra kicking around in his liquor cabinet? And where do I get mine?

The primary difference between matter and antimatter is that they have opposite electric charge. Which seems pretty mundane. The negatively charged electron has an antiparticle known as the positron, which has a positive electric charge.

Anti-protons have a negative charge, and are just flat out grumpy. We’ve been able to create these particles in the lab, and have even been able to create small amounts of anti-hydrogen consisting of a positron bound to an antiproton, when examined closely there’s were shown to have a goatee and a little colorful sash or dagger.

When we create particles in accelerators such as the Large Hadron Collider, we seem to get equal amounts of matter and antimatter. This suggests that when particles were formed soon after the big bang, there should have been equal amounts of matter and antimatter.

But the universe we observe is only made of matter, and… here’s the best part… we have no idea why. Why didn’t the matter and antimatter completely annihilate each other? How come we ended up with a little more matter? This delightful mystery is known as baryon asymmetry.

We do have a few ideas, and by we, I mean some giant brained crackerjacks have come up with a few plausible options. The most popular is that somehow antimatter behaves a little differently than matter. This could cause an imbalance between matter and antimatter. After particles collided in the early universe, there would still be matter left over, hence the matter we observe.

Another idea is that the observable universe just happens to be in a region dominated by matter. Other parts of the multiverse could have observable universes dominated by antimatter. Baryon asymmetry is one of the big mysteries of modern cosmology.

There is an even crazier idea. Antimatter might have anti-gravity. In other words, an atom of anti-hydrogen would fall up instead of down. If that is the case, then matter and antimatter would repel each other, and you might have matter universes and antimatter universes that are forever separate.There have been some initial experiments to test this idea, but so far there have been no conclusive results.

What do you think? Where’s all our antimatter and how do we track it down? I’d sure love to bring some home and show my friends…

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!