Dust Devils and Strong Winds Produce the Constant Haze on Mars

Dust is an everyday feature on Mars and wreaks havoc on various pieces of equipment humans decide to send to it, such as Insight’s continual loss of power or the losses of Opportunity and Spirit. But we’ve never really understood what causes the dust to get up into the air in the first place. That equipment that is so affected by it usually isn’t set up to monitor it, or if it is, it has been sent to a place where there isn’t much dust, to begin with. Now, that has changed with new readings from Perseverance in Jerezo crater, and the answer shouldn’t be much of a surprise – dust devils seem to cause some of the dust in the atmosphere on Mars. But strong winds contribute a significant amount too.

Continue reading “Dust Devils and Strong Winds Produce the Constant Haze on Mars”

Bad Weather Postpones Ingenuity’s 19th Flight on Mars

NASA’s Perseverance Mars rover took a selfie with the Ingenuity helicopter, seen here about 13 feet (3.9 meters) from the rover. This image was taken by the WASTON camera on the rover’s robotic arm on April 6, 2021, the 46th Martian day, or sol, of the mission. Credits: NASA/JPL-Caltech/MSSS.

The first flight of 2022 for the Ingenuity Helicopter has been delayed due to a regional dust storm on Mars. Mission planners had originally targeted January 5 for the tiny helicopter’s 19th flight, but they needed to push back the flight when orbital images and weather instruments on the Perseverance rover indicated a worsening weather situation.

Weather conditions have now improved, however, and the Ingenuity team anticipates the next flight will take place on Sunday, January 23.

Continue reading “Bad Weather Postpones Ingenuity’s 19th Flight on Mars”

Amazing View of How Dust Storms Grow on Mars

Two snapshots, about two weeks apart, of a 3D simulation of the 2018 Global Dust Storm performed with the NASA Ames Mars Global Climate Model. The storm began as a regional storm in Acidalia then moved eastward, triggering more dust lifting along the way (in Arabia, Sabaea, Hellas etc.). As the storm grew larger and became global, intense dust lifting events occurred in the Tharsis region, injecting dust at high altitudes. Credit: Tanguy Bertrand / Alex Kling / NASA Ames Research Center

In 2018, Mars experienced one of its global dust storms, a phenomenon seen nowhere else. As science would have it, there were no fewer than six spacecraft in orbit around Mars at the time, and two surface rovers. This was an unprecedented opportunity to watch and study the storm.

Continue reading “Amazing View of How Dust Storms Grow on Mars”

NASA Spots Opportunity as the Dust Storm Clears. Still No Word From Her Though

NASA's Opportunity rover appears as a blip in the center of this square. This image taken by HiRISE, a high-resolution camera onboard NASA's Mars Reconnaissance Orbiter, shows the dust storm over Perseverance Valley has substantially cleared. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

A new image produced by the High-Resolution Imaging Science Experiment (HiRISE) aboard NASA’s Mars Reconnaissance Orbiter (MRO) has located the Opportunity rover on Mars. As expected, the rover was spotted on the  slopes of the Perseverance Valley, where it went into hibernation mode about 100 days ago when the planet-covering dust storm darkened skies above the region.

Continue reading “NASA Spots Opportunity as the Dust Storm Clears. Still No Word From Her Though”

As the Martian Dust Storm Subsides, There’s Still No Word From Opportunity

Artist's impression of the Opportunity Rover, part of NASA's Mars Exploration Program. NASA/JPL-Caltech

Martian dust storms are a pretty common occurrence, and generally happen whenever the southern hemisphere is experiencing summer. Though they can begin quite suddenly, these storms typically stay contained to a local area and last only about a few weeks. However, on occasion, Martian dust storms can grow to become global phenomena, covering the entire planet.

One such storm began back in May, starting in the Arabia Terra region and then spreading to become a planet-wide dust storm within a matter of weeks. This storm caused the skies over the Perseverance Valley, where the Opportunity rover is stationed, to become darkened, forcing the rover into hibernation mode. And while no word has been heard from the rover, NASA recently indicated that the dust storm will dissipate in a matter of weeks.

The update was posted by NASA’s Mars Exploration Program, which oversees operations for the Opportunity and Curiosity rovers, as well as NASA’s three Mars orbiters (Mars Odyssey, MRO, and MAVEN) and the Insight lander (which will land on Mars in 109 days). According to NASA, the storm is beginning to end, though it may be weeks or months before the skies are clear enough for Opportunity to exit its hibernation mode.

This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA’s Mars Reconnaissance Orbiter spacecraft. The blue dot indicates the approximate location of Opportunity. Image Credit: NASA/JPL-Caltech/MSSS

As noted, dust storms occur on Mars when the southern hemisphere experiences summer, which coincides with the planet being closer to the Sun in its elliptical orbit. Due to increased temperatures, dust particles are lifted higher into the atmosphere, creating more wind. The resulting wind kicks up yet more dust, creating a feedback loop that NASA scientists are still trying to understand.

Since the southern polar region is pointed towards the Sun in the summer, carbon dioxide frozen in the polar cap evaporates. This has the effect of thickening the atmosphere and increasing the surface pressure, which enhances the process by helping suspend dust particles in the air. In some cases, the dust clouds can reach up to 60 km (40 mi) or more in elevation.

Planet-wide dust storms are a relatively rare occurrence on Mars, taking place every three to four Martian years (the equivalent of approximately 6 to 8 Earth years). Such storms have been viewed many times in the past by missions like Mariner 9 (1971), Viking I (1971) and the Mars Global Surveyor (2001). In 2007, a similar storm took place that darkened the skies over where Opportunity was stationed – which led to two weeks of minimal operations and no communications.

While smaller and less intense the storm that took place back in 2007, the current storm intensified to the point where it led to a level of atmospheric opacity that is much worse than the 2007 storm. In effect, the amount of dust in the atmosphere created a state of perpetual night over the rover’s location in Perseverance Valley, which forced the rover’s science team to suspend operations.

Simulated views of a darkening Martian sky blotting out the Sun from NASA’s Opportunity rover’s point of view, with the right side simulating Opportunity’s view in the global dust storm as of June 2018. Credit: NASA/JPL-Caltech/TAMU

This is due to the fact that Opportunity – unlike the Curiosity rover, which runs on nuclear-powered battery – relies on solar panels to keep its batteries charged. But beyond suspending operations, the prolonged dust storm also means that the rover might not be to keep its energy-intensive survival heaters running – which protect its batteries from the extreme cold of Mars’ atmosphere.

Luckily, NASA scientists who have been observing the global event indicated that, as of last Monday (July 23rd), more dust was falling out of the planet’s thin air than was being raised into it. This means that the global weather event has reached its decay phase, where dust-raising events either become confined to smaller areas or stop altogether.

Using its Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), NASA’s Mars Reconnaissance Orbiter (MRO) also noted surface features were beginning to reappear and that temperatures in the middle atmosphere were no longer rising – which indicates less solar heating by dust. The Curiosity rover also noted a decline in dust above its position in the Gale Crater on the other side of the planet.

This is certainly good new for the Opportunity rover, though scientists expect that it will still be a few weeks or months before its solar panels can draw power again and communications can be reestablished. The last time communications took place with the rover was on June 10th, but if there’s one thing the Opportunity rover is known for, it’s endurance!

When the rover first landed on Mars on January 25th, 2004, its mission was only expected to last ninety Martian days (sols), which is the equivalent of about 92.5 Earth days. However, as of the writing of this article, the rover has endured for 14 years and 195 days, effectively exceeding its operational lifespan 55 times over. So if any rover can survive this enduring dust storm, its Opportunity!

In the meantime, multiple NASA missions are actively monitoring the storm in support of Opportunity and to learn more about the mechanics of Martian storms. By learning more about what causes these storms, and how smaller ones can merge to form global events, future robotic missions, crewed missions and (quite possibly) Martian colonists will be better prepared to deal with them.

Further Reading: NASA

This Stunning Photo Shows the Martian Dust Storm as it was Just Getting Going

True color image of a storm front located near Utopia Planitia, near the northern polar ice cap of Mars. Credit: Credits: ESA/DLR/FU Berlin

The weather patterns on Mars are rather fascinating, owing to their particular similarities and differences with those of Earth. For one, the Red Planet experiences dust storms that are not dissimilar to storms that happen regularly here on Earth. Due to the lower atmospheric pressure, these storms are much less powerful than hurricanes on Earth, but can grow so large that they cover half the planet.

Recently, the ESA’s Mars Express orbiter captured images of the towering cloud front of a dust storm located close to Mars’ northern polar region. This storm, which began in April 2018, took place in the region known as Utopia Planitia, close to the ice cap at the Martian North Pole. It is one of several that have been observed on Mars in recent months, one which is the most severe to take place in years.

The images (shown above and below) were created using data acquired by the Mars ExpressHigh Resolution Stereo Camera (HRSC). The camera system is operated by the German Aerospace Center (DLR), and managed to capture images of this storm front – which would prove to be the harbinger of the Martian storm season – on April 3rd, 2018, during its 18,039th orbit of Mars.

Anaglyph 3D image of the dust storm front forming above the subpolar plains in northern Mars. Credit: Credits: ESA/DLR/FU Berlin

This storm was one of several small-scale dust storms that have been observered in recent months on Mars. A much larger storm emerged further southwest in the Arabia Terra region, which began in May of 2018 and developed into a planet-wide dust storm within several weeks.

Dust storms occur on Mars when the southern hemisphere experiences summer, which coincides with the planet being closer to the Sun in its elliptical orbit. Due to increased temperatures, dust particles are lifted higher into the atmosphere, creating more wind. The resulting wind kicks up yet more dust, creating a feedback loop that NASA scientists are still trying to understand.

Since the southern polar region is pointed towards the Sun in the summer, carbon dioxide frozen in the polar cap evaporates. This has the effect of thickening the atmosphere and increases surface pressure, which enhances the storms by helping to suspend dust particles in the air. Though they are common and can begin suddenly, Martian dust storms typically stay localized and last only a few weeks.

While local and regional dust storms are frequent, only a few of them develop into global phenomena. These storms only occur every three to four Martian years (the equivalent of approximately 6 to 8 Earth years) and can persist for several months. Such storms have been viewed many times in the past by missions like Mariner 9 (1971), Viking I (1971) and the Mars Global Surveyor (2001).

This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA’s Mars Reconnaissance Orbiter spacecraft. The blue dot indicates the approximate location of Opportunity. Image Credit: NASA/JPL-Caltech/MSSS

In 2007, a large storm covered the planet and darkened the skies over where the Opportunity rover was stationed – which led to two weeks of minimal operations and no communications. The most recent storm, which began back in May, has been less intense, but managed to create a state of perpetual night over Opportunity’s location in Perseverance Valley.

As a result, the Opportunity team placed the rover into hibernation mode and shut down communications in June 2018. Meanwhile, NASA’s Curiosity rover continues to explore the surface of Mars, thanks to its radioisotope thermoelectric generator (RTG), which does not rely on solar panels. By autumn, scientists expect the dust storm will weaken significantly, and are confident Opportunity will survive.

According to NASA, the dust storm will also not affect the landing of the InSight Lander, which is scheduled to take place on November 26th, 2018. In the meantime, this storm is being monitored by all five active ESA and NASA spacecraft around Mars, which includes the 2001 Mars Odyssey, the Mars Reconnaissance Orbiter, the Mars Atmosphere and Volatile EvolutioN (MAVEN), the Mars Express, and the Exomars Trace Gas Orbiter.

Understanding how global storms form and evolve on Mars will be critical for future solar-powered missions. It will also come in handy when crewed missions are conducted to the planet, not to mention space tourism and colonization!

Further Reading: DLR

A Powerful Dust Storm Has Darkened the Skies Over Opportunity on Mars

This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA's Mars Reconnaissance Orbiter spacecraft. The blue dot indicates the approximate location of Opportunity. Image Credit: NASA/JPL-Caltech/MSSS

NASA’s Opportunity mission can rightly be called the rover that just won’t quit. Originally, this robotic rover was only meant to operate on Mars for 90 Martian days (or sols), which works out to a little over 90 Earth days. However, since it made its landing on January 25th, 2004, it has remained in operation for 14 years, 4 months, and 18 days – exceeding its operating plan by a factor of 50!

However, a few weeks ago, NASA received disturbing news that potentially posed a threat to the “little rover that could”. A Martian storm, which has since grown to occupy an area larger than North America – 18 million km² (7 million mi²) – was blowing in over rover’s position in the Perseverance Valley. Luckily, NASA has since made contact with the rover, which is encouraging sign.

NASA’s Mars Reconnaissance Orbiter first detected the storm on Friday, June 1st, and immediately notified the Opportunity team to begin preparing contingency plans. The storm quickly grew over the next few days and resulted in dust clouds that raised the atmosphere’s opacity, which blocked out most of the sunlight from reaching the surface. This is bad news for the rover since it relies on solar panels for power and to recharge its batteries.

Artist’s conception of a Mars Exploration Rover, which included Opportunity and Spirit. Credit: NASA

By Wednesday, June 6th, Opportunity’s power levels had dropped significantly and the rover was required to shift to minimal operations. But beyond merely limiting the rover’s operations, a prolonged dust storm also means that the rover might not be able to keep its energy-intensive survival heaters running – which protect its batteries from the extreme cold of Mars’ atmosphere.

The Martian cold is believed to be what resulted in the loss of the Spirit rover in 2010, Opportunity’s counterpart in the Mars Exploration Rover mission. Much like Opportunity, Spirit‘s mission as only meant to last for 90 days, but the rover managed to remain in operation for 2269 days (2208 sols) from start to finish. It’s also important to note that Opportunity has dealt with long-term storms before and emerged unscathed.

Back in 2007, a much larger storm covered the planet, which led to two weeks of minimal operations and no communications. However, the current storm has intensified as of Sunday morning (June 10th), creating a perpetual state of night over the rover’s location in Perseverance Valley and leading to a level of atmospheric opacity that is much worse than the 2007 storm.

Whereas the previous storm had an opacity level (tau) of about 5.5, this new storm has an estimated tau of 10.8. Luckily, NASA engineers received a transmission from the rover on Sunday, which was a positive indication since it proved that the rover still has enough battery charge to communicate with controllers at NASA’s Jet Propulsion Laboratory. This latest transmission also showed that the rover’s temperature had reached about -29 °C (-20 °F).

This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. That storm blocked out 99% of the Sun's energy, limiting the effectiveness of the rover's solar panels, and putting the mission in jeopardy. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=2475872
This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. Credit: NASA/JPL-Caltech/Cornell

Full dust storms like this and the one that took place in 2007 are rare, but not surprising. They occur during summer in the southern hemisphere, when sunlight warms dust particles and lifts them higher into the atmosphere, creating more wind. That wind kicks up yet more dust, creating a feedback loop that NASA scientists are still trying to understand. While they can begin suddenly, they tend to last on the order of weeks or even months.

A saving grace about these storms is that they limit the extreme temperature swings, and the dust they kick up can also absorb solar radiation, thus raising ambient temperatures around Opportunity. In the coming weeks, engineers at the JPL will continue to monitor the rover’s power levels and ensure that it maintains the proper balance to keep its batteries in working order.

In the meantime, Opportunity’s science operations remain suspended and the Opportunity team has requested additional communications coverage from NASA’s Deep Space Network – the global system of antennas that communicates with all of the agency’s deep space missions. And if there’s one thing Opportunity has proven, it is that it’s capable of enduring!

Fingers crossed the storm subsides as soon as possible and the little rover that could once again emerges unscathed. At this rate, it could have many more years of life left in it!

Further News: NASA

NASA’s Opportunity Rover Withstands Another Harsh Winter on Mars

Artist's impression of the Opportunity Rover, part of NASA's Mars Exploration Program. NASA/JPL-Caltech

When the Opportunity rover landed on Mars on January 25th, 2004, its mission was only meant to last for about 90 Earth days. But the little rover that could has exceeded all expectations by remaining in operation (as of the writing of this article) for a total of 13 years and 231 days and traveled a total of about 50 km (28 mi). Basically, Opportunity has continued to remain mobile and gather scientific data 50 times longer than its designated lifespan.

And according to a recent announcement from NASA’s Mars Exploration Program (MEP), the rover managed to survive yet another winter on Mars. Having endured the its eight Martian winter in a row, and with its solar panels in encouragingly clean condition, the rover will be in good shape for the coming dust-storm season. It also means the rover will live to see its 14th anniversary, which will take place on January 25th, 2018.

On Mars, a single year lasts the equivalent of 686.971 Earth days (or 1.88 Earth years). And since Mars’ axis is inclined 25.19° to its orbital plane (compared to Earth’s axial tilt of just over 23°), Mars also experiences seasons. However, these tend to last about twice as long as the seasons on Earth. And of course, the seasons on Mars’ are also much colder, with temperatures averaging about -63 °C (-82°F).

Enhanced-color view of ground sloping downward to the right in “Perseverance Valley”, taken by the Pancam on the Opportunity rover in October of 2017. Credits: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ

As Jennifer Herman, the power subsystem operations team lead for Opportunity at NASA’s Jet Propulsion Laboratory, recalled in a NASA MEP press statement:

“I didn’t start working on this project until about Sol 300, and I was told not to get too settled in because Spirit and Opportunity probably wouldn’t make it through that first Martian winter. Now, Opportunity has made it through the worst part of its eighth Martian winter.”

At present, both the Opportunity and Spirit rover are in Mars’ southern hemisphere. Here, the Sun appears in the northern sky during the fall and winter, so the rovers need to tilt their solar-arrays northward. Back in 2004, the Spirit rover had lost the use of two of its wheels, and could therefore not maneuver out of a sand trap it had become stuck in. As such, it was unable to tilt itself northward and did not survive its fourth Martian winter (in 2009).

However, Opportunity’s current position – Perseverance Valley, a fluid-carved region on the inner slope at the edge of the Endeavour Crater – meant that it was well-positioned to keep working through late fall and early winter this year. This was ensured by the stops the rover made at energy-favorable locations, where it would inspect local rocks, examine the valley’s shape and image the surrounding area, all the while absorbing ample energy from the Sun.

Image of the floor of Endeavour Crater, taken by NASA’s Mars Exploration Rover Opportunity on Nov. 11th, 2017, about a week before Opportunity’s eighth Martian winter solstice. Credits: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ

Five months ago, the rover entered the top of the valley, which runs eastward down the inner slope of the Endurance Crater’s western rim. Since that time, Opportunity has been conducting stops between drives at north-facing sites, which are situated along the southern edge of the channel. The rover team calls the sites “lily pads”, since these places are spots that the rover need to hop across during its mission.

This is necessary, given that Opportunity does not rely on a radioisotope thermoelectric generator like Curiosity does. While winter conditions affect the use of electrical heaters and batteries on both rovers, Opportunity is different in that it’s activities are more subject to seasonal change. Whereas Curiosity will simply allocate less energy to performing tasks in the winter, Opportunity needs to pick its routes to ensure it stays powered up.

During some of its previous winters, the Opportunity rover was not as well-situated as it currently is. During its fifth winter (2011-2012) the rover spent 19 weeks at one spot because no other places that allowed for a northward-facing tilt were available within driving distance. On the other hand, its first winter (2004-2005) was spent in the southern half of the Endurance Crater, where all grounds are favorable since they face north.

As the person who is chiefly responsible for advising other mission scientists on how much energy Opportunity has available on each Martian day (sol) for conducting activities like driving and observing – a task she performs for Curiosity as well – Herman understand the relationship between power usage and the seasons all too well. “Relying on solar energy for Opportunity keeps us constantly aware of the season on Mars and the terrain that the rover is on, more than for Curiosity,” she said.

A self-portrait of the Opportunity rover shortly after dust cleared its solar panels in March 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Another factor which can influence Opportunity‘s power supply is how much dust is in the sky and how much of it gets onto the rover’s solar arrays. This is highly-dependent on prevailing wind conditions, which can both stir up dust storms and clear away dust deposits on the rover – basically, they are a real mixed blessing! During autumn and winter in the southern-hemisphere, the skies are generally clear where Opportunity operates.

Spring and summer is when the storms are most common in Mars’ southern hemisphere, though they don’t happen every year. The latest example took place in 2007, which led to a severe reduction in the amount of sunlight (and hence, solar energy) Spirit and Opportunity were able to receive. This required both rovers to enact emergency protocols and reduce the amount of operations and communications they conducted.

The amount of dust on the rover’s solar arrays going into autumn can also vary from year to year. This year, the array was dustier than in all but one of the previous Martian autumns it experienced. Luckily, as Herman explained, things worked out for the rover:

“We were worried that the dust accumulation this winter would be similar to some of the worst winters we’ve had, and that we might come out of the winter with a very dusty array, but we’ve had some recent dust cleaning that was nice to see. Now I’m more optimistic. If Opportunity’s solar arrays keep getting cleaned as they have recently, she’ll be in a good position to survive a major dust storm. It’s been more than 10 Earth years since the last one and we need to be vigilant.”

Image of the Opportunity rover’s front wheel, taken on June 9th, 2004, inside the Endurance Crater. Credit: NASA/JPL/Cornell

In the coming months, the Opportunity team hopes to investigate how the Perseverance Valley was cut into the rim of the Endeavor crater. As Matt Golombek, an Opportunity Project Scientist at JPL, related:

“We have not been seeing anything screamingly diagnostic, in the valley itself, about how much water was involved in the flow. We may get good diagnostic clues from the deposits at the bottom of the valley, but we don’t want to be there yet, because that’s level ground with no more lily pads.”

With its eighth winter finished and Opportunity still in good working order, we can expect the tenacious rover to keep turning up interesting finds on Mars. These include clues about Mars’ warmer, wetter past, which likely included a standing body of water in the Endeavor crater. And assuming conditions are favorable in the coming year, we can expect that Opportunity will continue to push the boundaries of both science and its own endurance!

Further Reading: NASA