What is a Magnetic Field?

Everyone knows just how fun magnets can be. As a child, who among us didn’t love to see if we could make our silverware stick together? And how about those little magnetic rocks that we could arrange to form just about any shape because they stuck together? Well, magnetism is not just an endless source of fun or good for scientific experiments; it’s also one of basic physical laws upon which the universe is based.

The attraction known as magnetism occurs when a magnetic field is present, which is a field of force produced by a magnetic object or particle. It can also be produced by a changing electric field and is detected by the force it exerts on other magnetic materials. Hence why the area of study dealing with magnets is known as electromagnetism.


Magnetic fields can be defined in a number of ways, depending on the context. However, in general terms, it is an invisible field that exerts magnetic force on substances which are sensitive to magnetism. Magnets also exert forces and torques on each other through the magnetic fields they create.

Visualization of the solar wind encountering Earth's magnetic "defenses" known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet's nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL
Visualization of the solar wind encountering Earth’s magnetosphere. Like a dipole magnet, it has field lines and a northern and southern pole. Credit: JPL

They can be generated within the vicinity of a magnet, by an electric current, or a changing electrical field. They are dipolar in nature, which means that they have both a north and south magnetic pole. The Standard International (SI) unit used to measure magnetic fields is the Tesla, while smaller magnetic fields are measured in terms of Gauss (1 Tesla = 10,000 Guass).

Mathematically, a magnetic field is defined in terms of the amount of force it exerted on a moving charge. The measurement of this force is consistent with the Lorentz Force Law, which can be expressed as F= qvB, where F is the magnetic force, q is the charge, v is the velocity, and the magnetic field is B. This relationship is a vector product, where F is perpendicular (->) to all other values.

Field Lines:

Magnetic fields may be represented by continuous lines of force (or magnetic flux) that emerge from north-seeking magnetic poles and enter south-seeking poles. The density of the lines indicate the magnitude of the field, being more concentrated at the poles (where the field is strong) and fanning out and weakening the farther they get from the poles.

A uniform magnetic field is represented by equally-spaced, parallel straight lines. These lines are continuous, forming closed loops that run from north to south, and looping around again. The direction of the magnetic field at any point is parallel to the direction of nearby field lines, and the local density of field lines can be made proportional to its strength.

Magnetic field lines resemble a fluid flow, in that they are streamlined and continuous, and more (or fewer lines) appear depending on how closely a field is observed. Field lines are useful as a representation of magnetic fields, allowing for many laws of magnetism (and electromagnetism) to be simplified and expressed in mathematical terms.

A simple way to observe a magnetic field is to place iron filings around an iron magnet. The arrangements of these filings will then correspond to the field lines, forming streaks that connect at the poles. They also appear during polar auroras, in which visible streaks of light line up with the local direction of the Earth’s magnetic field.

History of Study:

The study of magnetic fields began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field of a spherical magnet using iron needles. The places where these lines crossed he named “poles” (in reference to Earth’s poles), which he would go on to claim that all magnets possessed.

During the 16th century, English physicist and natural philosopher William Gilbert of Colchester replicated Peregrinus’ experiment. In 1600, he published his findings in a treaties (De Magnete) in which he stated that the Earth is a magnet. His work was intrinsic to establishing magnetism as a science.

View of the eastern sky during the peak of this morning's aurora. Credit: Bob King
View of the eastern sky during the peak of this morning’s aurora. Credit: Bob King

In 1750, English clergyman and philosopher John Michell stated that magnetic poles attract and repel each other. The force with which they do this, he observed, is inversely proportional to the square of the distance, otherwise known as the inverse square law.

In 1785, French physicist Charles-Augustin de Coulomb experimentally verified Earths’ magnetic field. This was followed by 19th century French mathematician and geometer Simeon Denis Poisson created the first model of the magnetic field, which he presented in 1824.

By the 19th century, further revelations refined and challenged previously-held notions. For example, in 1819, Danish physicist and chemist Hans Christian Orsted discovered that an electric current creates a magnetic field around it. In 1825, André-Marie Ampère proposed a model of magnetism where this force was due to perpetually flowing loops of current, instead of the dipoles of magnetic charge.

In 1831, English scientist Michael Faraday showed that a changing magnetic field generates an encircling electric field. In effect, he discovered electromagnetic induction, which was characterized by Faraday’s law of induction (aka. Faraday’s Law).

A Faraday cage in power plant in Heimbach, Germany. Credit: Wikipedia Commons/Frank Vincentz
A Faraday cage in power plant in Heimbach, Germany. Credit: Wikipedia Commons/Frank Vincentz

Between 1861 and 1865, Scottish scientist James Clerk Maxwell published his theories on electricity and magnetism – known as the Maxwell’s Equations. These equations not only pointed to the interrelationship between electricity and magnetism, but showed how light itself is an electromagnetic wave.

The field of electrodynamics was extended further during the late 19th and 20th centuries. For instance, Albert Einstein (who proposed the Law of Special Relativity in 1905), showed that electric and magnetic fields are part of the same phenomena viewed from different reference frames. The emergence of quantum mechanics also led to the development of quantum electrodynamics (QED).


A classic example of a magnetic field is the field created by an iron magnet. As previously mentioned, the magnetic field can be illustrated by surrounding it with iron filings, which will be attracted to its field lines and form in a looping formation around the poles.

Larger examples of magnetic fields include the Earth’s magnetic field, which resembles the field produced by a simple bar magnet. This field is believed to be the result of movement in the Earth’s core, which is divided between a solid inner core and molten outer core which rotates in the opposite direction of Earth. This creates a dynamo effect, which is believed to power Earth’s magnetic field (aka. magnetosphere).

Computer simulation of the Earth's field in a period of normal polarity between reversals.[1] The lines represent magnetic field lines, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and vertical. The dense clusters of lines are within the Earth's core
Computer simulation of the Earth’s field in a period of normal polarity between reversals.[1] The lines represent magnetic field lines, blue when the field points towards the center and yellow when away. Credit: NASA
Such a field is called a dipole field because it has two poles – north and south, located at either end of the magnet – where the strength of the field is at its maximum. At the midpoint between the poles the strength is half of its polar value, and extends tens of thousands of kilometers into space, forming the Earth’s magnetosphere.

Other celestial bodies have been shown to have magnetic fields of their own. This includes the gas and ice giants of the Solar System – Jupiter, Saturn, Uranus and Neptune. Jupiter’s magnetic field is 14 times as powerful as that of Earth, making it the strongest magnetic field of any planetary body. Jupiter’s moon Ganymede also has a magnetic field, and is the only moon in the Solar System known to have one.

Mars is believed to have once had a magnetic field similar to Earth’s, which was also the result of a dynamo effect in its interior. However, due to either a massive collision, or rapid cooling in its interior, Mars lost its magnetic field billions of years ago. It is because of this that Mars is believed to have lost most of its atmosphere, and the ability to maintain liquid water on its surface.

When it comes down to it, electromagnetism is a fundamental part of our Universe, right up there with nuclear forces and gravity. Understanding how it works, and where magnetic fields occur, is not only key to understanding how the Universe came to be, but may also help us to find life beyond Earth someday.

We have written many articles about the magnetic field for Universe Today. Here’s What is Earth’s Magnetic Field, Is Earth’s Magnetic Field Ready to Flip?, How Do Magnets Work?, Mapping The Milky Way’s Magnetic Fields – The Faraday Sky, Magnetic Fields in Spiral Galaxies – Explained at Last?, Astronomy Without A Telescope – Cosmic Magnetic Fields.

If you’d like more info on Earth’s magnetic field, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.


How Can You see the Northern Lights?

The Northern Lights have fascinated human beings for millennia. In fact, their existence has informed the mythology of many cultures, including the Inuit, Northern Cree, and ancient Norse. They were also a source of intense fascination for the ancient Greeks and Romans, and were seen as a sign from God by medieval Europeans.

Thanks to the birth of modern astronomy, we now know what causes both the Aurora Borealis and its southern sibling – Aurora Australis. Nevertheless, they remain the subject of intense fascination, scientific research, and are a major tourist draw. For those who live north of 60° latitude, this fantastic light show is also a regular occurrence.


Aurora Borealis (and Australis) is caused by interactions between energetic particles from the Sun and the Earth’s magnetic field. The invisible field lines of Earth’s magnetoshere travel from the Earth’s northern magnetic pole to its southern magnetic pole. When charged particles reach the magnetic field, they are deflected, creating a “bow shock” (so-named because of its apparent shape) around Earth.

However, Earth’s magnetic field is weaker at the poles, and some particles are therefore able to enter the Earth’s atmosphere and collide with gas particles in these regions. These collisions emit light that we perceive as wavy and dancing, and are generally a pale, yellowish-green in color.

The variations in color are due to the type of gas particles that are colliding. The common yellowish-green is produced by oxygen molecules located about 100 km (60 miles) above the Earth, whereas high-altitude oxygen – at heights of up to 320 km (200 miles) – produce all-red auroras. Meanwhile, interactions between charged particles and nitrogen will produces blue or purplish-red auroras.


The visibility of the northern (and southern) lights depends on a lot of factors, much like any other type of meteorological activity. Though they are generally visible in the far northern and southern regions of the globe, there have been instances in the past where the lights were visible as close to the equator as Mexico.

In places like Alaska, Norther Canada, Norway and Siberia, the northern lights are often seen every night of the week in the winter. Though they occur year-round, they are only visible when it is rather dark out. Hence why they are more discernible during the months where the nights are longer.

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble, protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. It’s shaped by winds of particles blowing from the sun called the solar wind, the reason it’s flattened on the “sun-side” and swept out into a long tail on the opposite side of the Earth. Credit: ESA/ATG medialab
The magnetic field and electric currents in and around Earth generate complex forces, and also lead to the phenomena known as aurorae. Credit: ESA/ATG medialab

Because they depend on the solar wind, auroras are more plentiful during peak periods of activity in the Solar Cycle. This cycle takes places every 11 years, and is marked by the increase and decrease of sunspots on the sun’s surface. The greatest number of sunspots in any given solar cycle is designated as a “Solar Maximum“, whereas the lowest number is a “Solar Minimum.”

A Solar Maximum also accords with bright regions appearing in the Sun’s corona, which are rooted in the lower sunspots. Scientists track these active regions since they are often the origin of eruptions on the Sun, such as solar flares or coronal mass ejections.

The most recent solar minimum occurred in 2008. As of January 2010, the Sun’s surface began to increase in activity, which began with the release of a lower-intensity M-class flare. The Sun continued to get more active, culminating in a Solar Maximum by the summer of 2013.

Locations for Viewing:

The ideal places to view the Northern Lights are naturally located in geographical regions north of 60° latitude.  These include northern Canada, Greenland, Iceland, Scandinavia, Alaska, and Northern Russia. Many organizations maintain websites dedicated to tracking optimal viewing conditions.

The camera recorded pale purple and red but the primary color visible to the eye was green. Credit: Bob Kin
An image captured of the northern lights, which appear pale purple and red, though the primary color visible to the eye was green. Credit: Bob Kin

For instance, the Geophysical Institute of the University of Alaska Fairbanks maintains the Aurora Forecast. This site is regularly updated to let residents know when auroral activity is high, and how far south it will extend. Typically, residents who live in central or northern Alaska (from Fairbanks to Barrow) have a better chance than those living in the south (Anchorage to Juneau).

In Northern Canada, auroras are often spotted from the Yukon, the Northwest Territories, Nunavut, and Northern Quebec. However, they are sometimes seen from locations like Dawson Creek, BC; Fort McMurry, Alberta; northern Saskatchewan and the town of Moose Factory by James Bay, Ontario. For information, check out Canadian Geographic Magazine’s “Northern Lights Across Canada“.

The National Oceanic and Atmospheric Agency also provides 30 minute forecasts on auroras through their Space Weather Prediction Center. And then there’s Aurora Alert, an Android App that allows you to get regular updates on when and where an aurora will be visible in your region.

Understanding the scientific cause of auroras has not made them any less awe-inspiring or wondrous. Every year, countless people venture to locations where they can be seen. And for those serving aboard the ISS, they got the best seat in the house!

Speaking of which, be sure to check out this stunning NASA video which shows the Northern Lights being viewed from the ISS:

We have written many interesting articles about Auroras here at Universe Today. Here’s The Northern and Southern Lights – What is an Aurora?, What is the Aurora Borealis?, What is the Aurora Australis?, What Causes the Northern Lights?, How Does the Aurora Borealis Form?, and Watch Fast and Furious All-sky Aurora Filmed in Real Time.

For more information, visit the THEMIS website – a NASA mission that is currently studying space weather in great detail. The Space Weather Center has information on the solar wind and how it causes aurorae.

Astronomy Cast also has episodes on the subject, like Episode 42: Magnetism Everywhere.


ESA Discovers Where All The Missing Socks Have Been Going

We here at Earth are fortunate that we have a viable atmosphere, one that is protected by Earth’s magnetosphere. Without this protective envelope, life on the surface would be bombarded by harmful radiation emanating from the Sun. However, Earth’s upper atmosphere is still slowly leaking, with about 90 tonnes of material a day escaping from the upper atmosphere and streaming into space.

And although astronomers have been investigating this leakage for some time, there are still many unanswered questions. For example, how much material is being lost to space, what kinds, and how does this interact with solar wind to influence our magnetic environment? Such has been the purpose of the European Space Agency’s Cluster project, a series of four identical spacecraft that have been measuring Earth’s magnetic environment for the past 15 years.

Understanding our atmosphere’s interaction with solar wind first requires that we understand how Earth’s magnetic field works. For starters, it extends from the interior of our planet (and is believed to be the result of a dynamo effect in the core), and reaches all the way out into space. This region of space, which our magnetic field exerts influence over, is known as the magnetosphere.

The four Cluster spacecraft crossing the northern cusp of Earth's magnetosphere. Credit: ESA/AOES Medialab
The four Cluster spacecraft crossing the northern cusp of Earth’s magnetosphere. Credit: ESA/AOES Medialab

The inner portion of this magnetosphere is called the plasmasphere, a donut-shaped region which extends to a distance of about 20,000 km from the Earth and co-rotates with it. The magnetosphere is also flooded with charged particles and ions that get trapped inside, and then are sent bouncing back and forth along the region’s field lines.

At its forward, Sun-facing edge, the magnetosphere meets the solar wind – a stream of charged particles flowing from the Sun into space. The spot where they make contact is known as the “Bow Shock”, which is so-named because its magnetic field lines force solar wind to take on the shape of a bow as they pass over and around us.

As the solar wind passes over Earth’s magnetosphere, it comes together again behind our planet to form a magnetotail – an elongated tube which contains trapped sheets of plasma and interacting field lines. Without this protective envelope, Earth’s atmosphere would have been slowly stripped away billions of years ago, a fate that is now believed to have befallen Mars.

That being said, Earth’s magnetic field is not exactly hermetically sealed. For example, at our planet’s poles, the field lines are open, which allows solar particles to enter and fill our magnetosphere with energetic particles. This process is what is responsible for Aurora Borealis and Aurora Australis (aka. the Northern and Southern Lights).

An illustration showing the natural barrier Earth gives us against solar radiation. Credit: NASA.
An illustration showing the natural barrier Earth gives us against solar radiation. Credit: NASA.

At the same time, particles from Earth’s upper atmosphere (the ionosphere) can escape the same way, traveling up through the poles and being lost to space. Despite learning much about Earth’s magnetic fields and how plasma is formed through its interaction with various particles, much about the whole process has been unclear until quite recently.

As Arnaud Masson, ESA’s Deputy Project Scientist for the Cluster mission stated in an ESA press release:

The question of plasma transport and atmospheric loss is relevant for both planets and stars, and is an incredibly fascinating and important topic. Understanding how atmospheric matter escapes is crucial to understanding how life can develop on a planet. The interaction between incoming and outgoing material in Earth’s magnetosphere is a hot topic at the moment; where exactly is this stuff coming from? How did it enter our patch of space?

Given that our atmosphere contains 5 quadrillion tons of matter (that’s 5 x 1015, or 5,000,000 billion tons), a loss of 90 tons a day doesn’t amount to much. However, this number does not include the mass of “cold ions” that are regularly being added. This term is typically used to described the hydrogen ions that we now know are being lost to the magnetosphere on a regular basis (along with oxygen and helium ions).

Since hydrogen requires less energy to escape our atmosphere, the ions that are created once this hydrogen becomes part of the plasmasphere also have low energy. As a result, they have been very difficult to detect in the past. What’s more, scientists have only known about this flow of oxygen, hydrogen and helium ions – which come from the Earth’s polar regions and replenish plasma in the magnetosphere – for a few decades.

Illustration of ions flowing out from the polar cap towards the magnetotail. Credit: ESA - C. Carreau
Illustration of ions flowing out from the polar cap towards the magnetotail. Credit: ESA – C. Carreau

Prior to this, scientists believed that solar particles alone were responsible for plasma in Earth’s magnetosphere. But in more recent years, they have come to understand that two other sources contribute to the plasmasphere. The first are sporadic “plumes” of plasma that grow within the plasmasphere and travel outwards towards the edge of the magnetosphere, where they interact with solar wind plasma coming the other way.

The other source? The aforementioned atmospheric leakage. Whereas this consists of abundant oxygen, helium and hydrogen ions, the cold hydrogen ions appear to play the most important role. Not only do they constitute a significant amount of matter lost to space, and may play a key role in shaping our magnetic environment. What’s more, most of the satellites currently orbiting Earth are unable to detect the cold ions being added to the mix, something which Cluster is able to do.

In 2009 and in 2013, the Cluster probes were able to characterize their strength, as well as that of other sources of plasma being added to the Earth’s magnetosphere. When only the cold ions are considered, the amount of atmosphere being lost o space amounts to several thousand tons per year. In short, its like losing socks. Not a big deal, but you’d like to know where they are going, right?

This has been another area of focus for the Cluster mission, which for the last decade and a half has been attempting to explore how these ions are lost, where they come from, and the like. As Philippe Escoubet, ESA’s Project Scientist for the Cluster mission, put it:

In essence, we need to figure out how cold plasma ends up at the magnetopause. There are a few different aspects to this; we need to know the processes involved in transporting it there, how these processes depend on the dynamic solar wind and the conditions of the magnetosphere, and where plasma is coming from in the first place – does it originate in the ionosphere, the plasmasphere, or somewhere else?

Color illustration showing the scale of planets in our solar system, focusing on Jupiter and Saturn. Credit: NASA
Color illustration showing the scale of planets in our solar system, focusing on Jupiter and Saturn. Credit: NASA

The reasons for understanding this are clear. High energy particles, usually in the form of solar flares, can pose a threat to space-based technology. In addition, understanding how our atmosphere interacts with solar wind is also useful when it comes to space exploration in general. Consider our current efforts to locate life beyond our own planet in the Solar System. If there is one thing that decades of missions to nearby planets has taught us, it is that a planet’s atmosphere and magnetic environment are crucial in determining habitability.

Within close proximity to Earth, there are two examples of this: Mars, which has a thin atmosphere and is too cold; and Venus, who’s atmosphere is too dense and far too hot. In the outer Solar System, Saturn’s moon Titan continues to intrigue us, mainly because of the unusual atmosphere. As the only body with a nitrogen-rich atmosphere besides Earth, it is also the only known planet where liquid transfer takes place between the surface and the atmosphere – albeit with petrochemicals instead of water.

Moreover, NASA’s Juno mission will spend the next two years exploring Jupiter’s own magnetic field and atmosphere. This information will tell us much about the Solar System’s largest planet, but it is also hoped to shed some light on the history planetary formation in the Solar System.

In the past fifteen years, Cluster has been able to tell astronomers a great deal about how Earth’s atmosphere interacts with solar wind, and has helped to explore magnetic field phenomena that we have only begun to understand. And while there is much more to be learned, scientists agree that what has been uncovered so far would have been impossible without a mission like Cluster.

Further Reading: ESA

Jupiter’s Magnetosphere Will Blow Your Mind While it Kills Your Spacecraft

Jupiter is a huge planet, but its magnetosphere is mind-blowingly massive. It extends out to nearly 5 million kilometers (3 million miles) wide on average, 150 times wider than Jupiter itself and almost 15 times wider than the Sun, making it one of the largest structures in the Solar System.

“If you were to look up into the night sky and if we could see the outline of Jupiter’s magnetosphere, it would be about the size of the Moon in our sky,” said Jack Connerney, deputy principal investigator and head of the Juno mission magnetometer team. “It’s a very large feature in our Solar System, and it’s a pity we can’t see it.”

But the Juno spacecraft is about to change our understanding of Jupiter’s magnetosphere and allow scientists to “see” for the first time Jupiter’s magnetic field.

And today, NASA announced that Juno has entered Jupiter’s magnetic field. Listen to the video below as the spacecraft gathered data as it crossed the bow shock:

A magnetosphere is the area of space around a planet that is controlled by the planet’s magnetic field. The stronger the magnetic field, the larger the magnetosphere. It is estimated that Jupiter’s magnetic field is about 20,000 times stronger than Earth’s.

Jupiter has spectacular aurora, such as this view captured by the Hubble Space Telescope. Auroras are formed when charged particles in the space surrounding the planet are accelerated to high energies along the planet's magnetic field. Credit: NASA, ESA, and J. Nichols (University of Leicester)
Jupiter has spectacular aurora, such as this view captured by the Hubble Space Telescope. Auroras are formed when charged particles in the space surrounding the planet are accelerated to high energies along the planet’s magnetic field. Credit: NASA, ESA, and J. Nichols (University of Leicester)

Magnetic fields are produced by what are known as dynamos – an electric current created from the convection motion of a planet’s interior. Earth’s magnetic field is generated by its circulating core of molten iron and nickel. But what creates Jupiter’s dynamo? Is it like Earth’s or could it be very different? Jupiter consists predominantly of hydrogen and helium, and it is currently unknown if there is a rocky core at the center of the planet.

“With Jupiter, we don’t know what material is producing the planet’s magnetic field,” said Jared Espley, Juno program scientist for NASA Headquarters, “What material is present and how deep down it lies is one of the questions Juno is designed to answer.”

Juno has a pair of magnetometers to basically look inside the planet. The magnetometers will allow scientists to map Jupiter’s magnetic field with high accuracy and observe variations in the field over time. The instruments will be able to show how the magnetic field is generated by dynamo action deep in the planet’s interior, providing the first look at what the magnetic field looks like from the surface of the dynamo where it is generated.

“The best way to think of a magnetometer is like a compass,” said Connerney. “Compasses record the direction of a magnetic field. But magnetometers expand on that capability and record both the direction and magnitude of the magnetic field.”

But Jupiter presents a lot of problems as far as being nice to instruments. Trapped within the magnetosphere are charged particles from the Sun that form intense radiation belts around the planet. These belts are similar to the Earth’s Van Allen belts, but are many millions of times stronger.

To help protect the spacecraft and instrument electronics, Juno has a radiation vault about the size of a car trunk made of titanium that limits the radiation exposure to Juno’s command and data handling box (the spacecraft’s brain), power and data distribution unit (its heart) and about 20 other electronic assemblies. But the instruments themselves need to be outside of the vault in order to make their observations.

Workers place the special radiation vault for NASA's Juno spacecraft onto the propulsion module. Image credit: NASA/JPL-Caltech/LMSS
Workers place the special radiation vault for NASA’s Juno spacecraft onto the propulsion module. Image credit: NASA/JPL-Caltech/LMSS

The magnetometer sensors are on a boom attached to one of the solar arrays, placing them about 40 feet (12 meters) from the body of the spacecraft. This helps ensure that the rest of the spacecraft does not interfere with the magnetometer.
But there are other ways to help limit the amount of radiation exposure, at least in the first part of the mission.

Scientists designed a path that takes Juno around Jupiter’s poles so that the spacecraft spends the least amount of time possible in those blistering radiation belts around Jupiter’s equator. Engineers also used designs for electronics already approved for the Martian radiation environment, which is harsher than Earth’s, though not as harsh as Jupiter’s.

That elliptical orbit — between radiation belt and the planet — also puts the spacecraft very close to Jupiter, about 5,000 km above the cloud tops, enabling a close-up look at this amazing planet.

“This is our first opportunity to do very precise, high-accuracy mapping of the magnetic field of another planet,” Connerney said. “We are going to be able to explore the entire three-dimensional space around Jupiter, wrapping Jupiter in a dense net of magnetic field observations completely covering the sphere.”

By studying Jupiter’s magnetosphere, scientists will gain a better understanding about how Jupiter’s magnetic field is generated. They also hope to measure how fast Jupiter is spinning, determine whether the planet has a solid core, and learn more about Jupiter’s formation.

“It’s always incredible to be the first person in the world to see anything,” Connerney said, “and we stand to be the first to look down upon the dynamo and see it clearly for the first time.”

Further reading: Juno mission page, NASA article on Juno’s magnetometer.

Is Earth’s Magnetic Field Ready to Flip?

Illustration of the invisible magnetic field lines generated by the Earth. Unlike a classic bar magnet, the matter governing Earth's magnetic field moves around. The flow of liquid iron in Earth's core creates electric currents, which in turn creates the magnetic field. Credit and copyright: Peter Reid, University of Edinburgh
Illustration of the invisible magnetic field lines generated by the Earth. Unlike a classic bar magnet, the matter governing Earth’s magnetic field moves around. The flow of liquid iron in Earth’s core creates electric currents, which in turn creates the magnetic field. Credit and copyright: Peter Reid, University of Edinburgh

Although invisible to the eye, Earth’s magnetic field plays a huge role in both keeping us safe from the ever-present solar and cosmic winds while making possible the opportunity to witness incredible displays of the northern lights. Like a giant bar magnet, if you could sprinkle iron filings around the entire Earth, the particles would align to reveal the nested arcs of our magnetic domain. The same field makes your compass needle align north to south.

We can picture our magnetic domain as a huge bubble, protecting us from cosmic radiation and electrically charged atomic particles that bombard Earth in solar winds. Satellites and instruments on the ground keep a constant watch over this bubble of magnetic energy surrounding our planet. For good reason: it’s always changing.

Earth's magnetic field is thought to be generated by an ocean of super-heated, swirling liquid iron that makes up its the outer core 1,860 miles (3000 kilometers) under our feet. Acting like the spinning conductor in one of those bicycle dynamos or generators that power lights, it generates electrical currents and a constantly changing electromagnetic field. Other sources of magnetism come from minerals in Earth’s mantle and crust, while the ionosphere, magnetosphere and oceans also play a role. The three Swarm satellites precisely identify and measure precisely these different magnetic signals. Copyright: ESA/ATG Medialab
Earth’s magnetic field is thought to be generated by an ocean of super-heated, swirling liquid iron that makes up its the outer core 1,860 miles (3000 kilometers) under our feet. Acting like the spinning conductor similar to a bicycle dynamo that powers a headlight, it generates electrical currents and a constantly changing electromagnetic field. Other sources of magnetism come from minerals in Earth’s mantle and crust, while the ionosphere, magnetosphere and oceans also play a role. The three Swarm satellites precisely identify and measure precisely these different magnetic signals. Copyright: ESA/ATG Medialab

The European Space Agency’s Swarm satellite trio, launched at the end of 2013, has been busy measuring and untangling the different magnetic signals from Earth’s core, mantle, crust, oceans, ionosphere (upper atmosphere where the aurora occurs) and magnetosphere, the name given to the region of space dominated by Earth’s magnetic field.

At this week’s Living Planet Symposium in Prague, Czech Republic, new results from the constellation of Swarm satellites show where our protective field is weakening and strengthening, and how fast these changes are taking place.

Based on results from ESA’s Swarm mission, the animation shows how the strength of Earth’s magnetic field has changed between 1999 and mid-2016. Blue depicts where the field is weak and red shows regions where the field is strong. The field has weakened by about 3.5% at high latitudes over North America, while it has grown about 2% stronger over Asia. Watch also the migration of the north geomagnetic pole (white dot).

Between 1999 and May 2016 the changes are obvious. In the image above, blue depicts where the field is weak and red shows regions where it is strong. As well as recent data from the Swarm constellation, information from the CHAMP and Ørsted satellites were also used to create the map.

The animation shows changes in the rate at which Earth’s magnetic field strengthened and weakened between 2000 and 2015. Regions where changes in the field have slowed are shown in blue while red shows where changes sped up. For example, in 2015 changes in the field have slowed near South Africa but changes got faster over Asia. This map has been compiled using data from ESA’s Swarm mission.

The animation show that overall the field has weakened by about 3.5% at high latitudes over North America, while it has strengthened about 2% over Asia. The region where the field is at its weakest – the South Atlantic Anomaly – has moved steadily westward and weakened further by about 2%. Moreover, the magnetic north pole is also on the move east, towards Asia. Unlike the north and south geographic poles, the magnetic poles wander in an erratic way, obeying the movement of sloshing liquid iron and nickel in Earth’s outer core. More on that in a minute.

The ‘South Atlantic Anomaly’ refers to an area where Earth's protective magnetic shield is weak. The white spots on this map indicate where electronic equipment on a TOPEX/Poseidon satellite was affected by radiation as it orbited above. Credit: ESA/DTU Space
The ‘South Atlantic Anomaly’ refers to an area where Earth’s protective magnetic shield is weak. The white spots on this map indicate where electronic equipment on a TOPEX/Poseidon satellite was affected by radiation as it orbited above. The colors indicate the strength of the planet’s magnetic field with red the highest value and blue the lowest.  Credit: ESA/DTU Space

The anomaly is a region over above South America, about 125-186 miles (200 – 300 kilometers) off the coast of Brazil, and extending over much of South America, where the inner Van Allen radiation belt dips just 125-500 miles (200 – 800 kilometers) above the Earth’s surface. Satellites passing through the anomaly experience extra-strong doses of radiation from fast-moving, charged particles.

This cutaway of planet Earth shows the familiar exterior of air, water and land as well as the interior: from the mantle down to the outer and inner cores. Currents in hot, liquid iron-nickel in the outer core create our planet's protective but fluctuating magnetic field. Credit: Kelvinsong / Wikipedia
This cutaway of planet Earth shows the familiar exterior of air, water and land as well as the interior: from the mantle down to the outer and inner cores. Currents in hot, liquid iron-nickel in the outer core create our planet’s protective but fluctuating magnetic field. Credit: Kelvinsong / Wikipedia

The magnetic field is thought to be produced largely by an ocean of molten, swirling liquid iron that makes up our planet’s outer core, 1,860 miles (3000 kilometers) under our feet. As the fluid churns inside the rotating Earth, it acts like a bicycle dynamo or steam turbine. Flowing material within the outer core generates electrical currents and a continuously changing electromagnetic field. It’s thought that changes in our planet’s magnetic field are related to the speed and direction of the flow of liquid iron and nickel in the outer core.

Chris Finlay, senior scientist at DTU Space in Denmark, said, “Swarm data are now enabling us to map detailed changes in Earth’s magnetic field. Unexpectedly, we are finding rapid localized field changes that seem to be a result of accelerations of liquid metal flowing within the core.”

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble, protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. It’s shaped by winds of particles blowing from the sun called the solar wind, the reason it’s flattened on the “sun-side” and swept out into a long tail on the opposite side of the Earth. Credit: ESA/ATG medialab
The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble, protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. It’s shaped by winds of particles blowing from the sun called the solar wind, the reason it’s flattened on the “sun-side” and swept out into a long tail on the opposite side of the Earth. Credit: ESA/ATG medialab

Further results are expected to yield a better understanding as why the field is weakening in some places, and globally. We know that over millions of years, magnetic poles can actually flip with north becoming south and south north. It’s possible that the current speed up in the weakening of the global field might mean it’s ready to flip.

Although there’s no evidence previous flips affected life in a negative way, one thing’s for sure. If you wake up one morning and find your compass needle points south instead of north, it’s happened.

How Do We Terraform Jupiter’s Moons?

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Jupiter’s Moons. Much like terraforming the inner Solar System, it might be feasible someday. But should we?

Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.

As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.

Continue reading “How Do We Terraform Jupiter’s Moons?”

Venus Compared to Earth

Venus is often referred to as “Earth’s Twin” (or “sister planet”), and for good reason. Despite some rather glaring differences, not the least of which is their vastly different atmospheres, there are enough similarities between Earth and Venus that many scientists consider the two to be closely related. In short, they are believed to have been very similar early in their existence, but then evolved in different directions.

Earth and Venus are both terrestrial planets that are located within the Sun’s Habitable Zone (aka. “Goldilocks Zone”) and have similar sizes and compositions. Beyond that, however, they have little in common. Let’s go over all their characteristics, one by one, so we can in what ways they are  different and what ways they are similar.

Continue reading “Venus Compared to Earth”

Mars Compared to Earth

At one time, astronomers believed the surface of Mars was crisscrossed by canal systems. This in turn gave rise to speculation that Mars was very much like Earth, capable of supporting life and home to a native civilization. But as human satellites and rovers began to conduct flybys and surveys of the planet, this vision of Mars quickly dissolved, replaced by one in which the Red Planet was a cold, desiccated and lifeless world.

However, over the past few decades, scientists have come to learn a great deal about the history of Mars that has altered this view as well. We now know that though Mars may currently be very cold, very dry, and very inhospitable, this wasn’t always the case. What’s more, we have come to see that even in its current form, Mars and Earth actually have a lot in common.

Between the two planets, there are similarities in size, inclination, structure, composition, and even the presence of water on their surfaces. That being said, they also have a lot of key differences that would make living on Mars, a growing preoccupation among many humans (looking at you, Elon Musk and Bas Lansdorp!), a significant challenge. Let’s go over these similarities and the difference in an orderly fashion, shall we?

Sizes, Masses and Orbits:

In terms of their size and mass, Earth and Mars are quite different. With a mean radius of 6371 km and a mass of 5.97×1024 kg, Earth is the fifth largest and fifth most-massive planet in the Solar System, and the largest of the terrestrial planets. Mars, meanwhile, has a radius of approximately 3,396 km at its equator (3,376 km at its polar regions), which is the equivalent of roughly 0.53 Earths. However, it’s mass is just 6.4185 x 10²³ kg, which is around 10.7% that of Earth’s.

The eccentricity in Mars' orbit means that it is . Credit: NASA
Artistic representation of the orbits of Earth and Mars. Credit: NASA

Similarly, Earth’s volume is a hefty 1.08321 x 1012 km3, which works out 1,083 billion cubic kilometers. By comparison, Mars has a volume of 1.6318 x 10¹¹ km³ (163 billion cubic kilometers) which is the equivalent of 0.151 Earths. Between this difference in size, mass, and volume, Mars’s surface gravity is 3.711 m/s², which works out to 37.6% of Earths (0.376 g).

In terms of their orbits, Earth and Mars are also quite different. For instance, Earth orbits the Sun at an average distance (aka. semi-major axis) of 149,598,261 km – or one Astronomical Unit (AU). This orbit has a very minor eccentricity (approx. 0.0167), which means its orbit ranges from 147,095,000 km (0.983 AU) at perihelion to 151,930,000 km (1.015 AU) at aphelion.

At its greatest distance from the Sun (aphelion), Mars orbits at a distance of approximately 249,200,000 km (1.666 AU). At perihelion, when it is closest to the Sun, it orbits at a distance of approximately 206,700,000 km (1.3814 AU). At these distances, the Earth has an orbital period of 365.25 days (1.000017 Julian years) while Mars has an orbital period of 686.971 days (1.88 Earth years). 

However, in terms of their sidereal rotation (time it takes for the planet to complete a single rotation on its axis) Earth and Mars are again in the same boat. While Earth takes precisely 23h 56m and 4 s to complete a single sidereal rotation (0.997 Earth days), Mars does the same in about 24 hours and 40 minutes. This means that one Martian day (aka. Sol) is very close to single day on Earth.

Earth's axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit. Credit: Wikipedia Commons
Earth’s axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit. Credit: Wikipedia Commons

Mars’s axial tilt is very similar to Earth’s, being inclined 25.19° to its orbital plane (whereas Earth’s axial tilt is just over 23°). This means that Mars also experiences seasons and temperature variations similar to that of Earth (see below).

Structure and Composition:

Earth and Mars are similar when it comes to their basic makeups, given that they are both terrestrial planets. This means that both are differentiated between a dense metallic core and an overlying mantle and crust composed of less dense materials (like silicate rock). However, Earth’s density is higher than that of Mars – 5.514 g/cm3 compared to 3.93 g/cm³ (or 0.71 Earths) – which indicates that Mars’ core region contains more lighter elements than Earth’s.

Earth’s core region is made up of a solid inner core that has a radius of about 1,220 km and a liquid outer core that extends to a radius of about 3,400 km. Both the inner and outer cores are composed of iron and nickel, with trace amounts of lighter elements, and together, they add to a radius that is as large as Mars itself. Current models of Mars’ interior suggest that its core region is roughly  1,794 ± 65 kilometers (1,115 ± 40 mi) in radius, and is composed primarily of iron and nickel with about 16-17% sulfur.

Both planets have a silicate mantle surrounding their cores and a surface crust of solid material. Earth’s mantle – consisting of an upper mantle of slightly viscous material and a lower mantle that is more solid – is roughly 2,890 km (1,790 mi) thick and is composed of silicate rocks that are rich in iron and magnesium. The Earth’s crust is on average 40 km (25 mi) thick, and is composed of rocks that are rich in iron and magnesium (i.e. igneous rocks) and granite (rich in sodium, potassium, and aluminum).

Artist's impression of the interior of Mars. Credit: NASA/JPL
Artist’s impression of the interior of Mars. Credit: NASA/JPL

Comparatively, Mars’ mantle is quite thin, measuring some 1,300 to 1,800 kilometers (800 – 1,100 mi) in thickness. Like Earth, this mantle is believed to be composed of silicate rock that are rich in minerals compared to the crust, and to be partially viscous (resulting in convection currents which shaped the surface). The crust, meanwhile, averages about 50 km (31 mi) in thickness, with a maximum of 125 km (78 mi). This makes it about three times as hick as Earth’s crust, relative to the sizes of the two planets.

Ergo, the two planets are similar in composition, owing to their common status as terrestrial planets. And while they are both differentiated between a metallic core and layers of less dense material, there is some variance in terms of how proportionately thick their respective layers are.

Surface Features:

When it comes to the surfaces of Earth and Mars, things once again become a case of contrasts. Naturally, it is the differences that are most apparent when comparing Blue Earth to the Red Planet – as the nicknames would suggest. Unlike other planet’s in our Solar System, the vast majority of Earth is covered in liquid water, about 70% of the surface – or 361.132 million km² (139.43 million sq mi) to be exact.

The surface of Mars is dry, dusty, and covered in dirt that is rich iron oxide (aka. rust, leading to its reddish appearance). However, large concentrations of ice water are known to exist within the polar ice caps – Planum Boreum and Planum Australe. In addition, a permafrost mantle stretches from the pole to latitudes of about 60°, meaning that ice water exists beneath much of the Martian surface. Radar data and soil samples have confirmed the presence of shallow subsurface water at the middle latitudes as well.

As for the similarities, Earth and Mars’ both have terrains that varies considerably from place to place. On Earth, both above and below sea level, there are mountainous features, volcanoes, scarps (trenches), canyons, plateaus, and abyssal plains. The remaining portions of the surface are covered by mountains, deserts, plains, plateaus, and other landforms.

Mars is quite similar, with a surface covered by mountain ranges, sandy plains, and even some of the largest sand dunes in the Solar System. It also has the largest mountain in the Solar System, the shield volcano Olympus Mons, and the longest, deepest chasm in the Solar System: Valles Marineris.

Earth and Mars have also experienced many impacts from asteroids and meteors over the years. However, Mars’ own impact craters are far better preserved, with many dating back billions of years. The reason for this is the low air pressure and lack of precipitation on Mars, which results in a very slow rate of erosion. However, this was not always the case.

Mars has discernible gullies and channels on its surface, and many scientists believe that liquid water used to flow through them. By comparing them to similar features on Earth, it is believed that these were were at least partially formed by water erosion.  Some of these channels are quite large, reaching 2,000 kilometers in length and 100 kilometers in width.

Color mosaic of Mars' greatest mountain, Olympus Mons, viewed from orbit. Credit NASA/JPL
Color mosaic of Mars’ greatest mountain, Olympus Mons, viewed from orbit. Credit NASA/JPL

So while they look quite different today, Earth and Mars were once quite similar. And similar geological processes occurred on both planets to give them the kind of varied terrain they both currently have.

Atmosphere and Temperature:

Atmospheric pressure and temperatures are another way in which Earth and Mars are quite different. Earth has a dense atmosphere composed of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. Mars’ is very thin by comparison, with pressure ranging from 0.4 – 0.87 kPa – which is equivalent to about 1% of Earth’s at sea level.

Earth’s atmosphere is also primarily composed of nitrogen (78%) and oxygen (21%) with trace concentrations of water vapor, carbon dioxide, and other gaseous molecules. Mars’ is composed of 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. Recent surveys have also noted trace amounts of methane, with an estimated concentration of about 30 parts per billion (ppb).

Because of this, there is a considerable difference between the average surface temperature on Earth and Mars. On Earth, it is approximately 14°C, with plenty of variation due to geographical region, elevation, and time of year. The hottest temperature ever recorded on Earth was 70.7°C (159°F) in the Lut Desert of Iran, while the coldest temperature was -89.2°C (-129°F) at the Soviet Vostok Station on the Antarctic Plateau.

Space Shuttle Endeavour sillouetted against the atmosphere. The orange layer is the troposphere, the white layer is the stratosphere and the blue layer the mesosphere.[1] (The shuttle is actually orbiting at an altitude of more than 320 km (200 mi), far above all three layers.) Credit: NASA
Space Shuttle Endeavor silhouetted against the atmosphere. The orange layer is the troposphere, the white layer is the stratosphere and the blue layer the mesosphere. Credit: NASA
Because of its thin atmosphere and its greater distance from the Sun, the surface temperature of Mars is much colder, averaging at -46 °C (-51 °F). However, because of its tilted axis and orbital eccentricity, Mars also experiences considerable variations in temperature. These can be seen in the form of a low temperature of -143 °C (-225.4 °F) during the winter at the poles, and a high of 35 °C (95 °F) during summer and midday at the equator.

The atmosphere of Mars is also quite dusty, containing particulates that measure 1.5 micrometers in diameter, which is what gives the Martian sky a tawny color when seen from the surface. The planet also experiences dust storms, which can turn into what resembles small tornadoes. Larger dust storms occur when the dust is blown into the atmosphere and heats up from the Sun.

So basically, Earth has a dense atmosphere that is rich in oxygen and water vapor, and which is generally warm and conducive to life. Mars, meanwhile, is generally very cold, but can become quite warm at times. It’s also quite dry and very dusty.

Magnetic Fields:

When it comes to magnetic fields, Earth and Mars are in stark contrast to each other. On Earth, the dynamo effect created by the rotation of Earth’s inner core, relative to the rotation of the planet, generates the currents which are presumed to be the source of its magnetic field. The presence of this field is of extreme importance to both Earth’s atmosphere and to life on Earth as we know it.

Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL
Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL

Essentially, Earth’s magnetosphere serves to deflect most of the solar wind’s charged particles which would otherwise strip away the ozone layer and expose Earth to harmful radiation. The field ranges in strength between approximately 25,000 and 65,000 nanoteslas (nT), or 0.25–0.65 Gauss units (G).

Today, Mars has weak magnetic fields in various regions of the planet which appear to be the remnant of a magnetosphere. These fields were first measured by the Mars Global Surveyor, which indicated fields of inconsistent strengths measuring at most 1500 nT (~16-40 times less than Earth’s). In the northern lowlands, deep impact basins, and the Tharsis volcanic province, the field strength is very low. But in the ancient southern crust, which is undisturbed by giant impacts and volcanism, the field strength is higher.

This would seem to indicate that Mars had a magnetosphere in the past, and explanations vary as to how it lost it. Some suggest that it was blown off, along with the majority of Mars’ atmosphere, by a large impact during the Late Heavy Bombardment. This impact, it is reasoned, would have also upset the heat flow in Mars’ iron core, arresting the dynamo effect that would have produced the magnetic field.

Another theory, based on NASA’s MAVEN mission to study the Martian atmosphere, has it that Mars’ lost its magnetosphere when the smaller planet cooled, causing its dynamo effect to cease some 4.2 billion years ago. During the next several hundred million years, the Sun’s powerful solar wind stripped particles away from the unprotected Martian atmosphere at a rate 100 to 1,000 times greater than that of today. This in turn is what caused Mars to lose the liquid water that existed on its surface, as the environment to become increasing cold, desiccated, and inhospitable.


Earth and Mars are also similar in that both have satellites that orbit them. In Earth’s case, this is none other than The Moon, our only natural satellite and the source of the Earth’s tides. It’s existence has been known of since prehistoric times, and it has played a major role in the mythological and astronomical traditions of all human cultures. In addition, its size, mass and other characteristics are used as a reference point when assessing other satellites.

The Moon is one of the largest natural satellites in the Solar System and is the second-densest satellite of those whose moons who’s densities are known (after Jupiter’s satellite Io). Its diameter, at 3,474.8 km, is one-fourth the diameter of Earth; and at 7.3477 × 1022 kg, its mass is 1.2% of the Earth’s mass. It’s mean density is 3.3464 g/cm3 , which is equivalent to roughly 0.6 that of Earth. All of this results in our Moon possessing gravity that is about 16.54% the strength of Earth’s (aka. 1.62 m/s2).

The Moon varies in orbit around Earth, going from 362,600 km at perigee to 405,400 km at apogee. And like most known satellites within our Solar System, the Moon’s sidereal rotation period (27.32 days) is the same as its orbital period. This means that the Moon is tidally locked with Earth, with one side is constantly facing towards us while the other is facing away.

Thanks to examinations of Moon rocks that were brought back to Earth, the predominant theory states that the Moon was created roughly 4.5 billion years ago from a collision between Earth and a Mars-sized object (known as Theia). This collision created a massive cloud of debris that began circling our planet, which eventually coalesced to form the Moon we see today.

Mars has two small satellites, Phobos and Deimos. These moons were discovered in 1877 by the astronomer Asaph Hall and were named after mythological characters. In keeping with the tradition of deriving names from classical mythology, Phobos and Deimos are the sons of Ares – the Greek god of war that inspired the Roman god Mars. Phobos represents fear while Deimos stands for terror or dread.

Phobos measures about 22 km (14 mi) in diameter, and orbits Mars at a distance of 9,234.42 km when it is at periapsis (closest to Mars) and 9,517.58 km when it is at apoapsis (farthest). At this distance, Phobos is below synchronous altitude, which means that it takes only 7 hours to orbit Mars and is gradually getting closer to the planet. Scientists estimate that in 10 to 50 million years, Phobos could crash into Mars’ surface or break up into a ring structure around the planet.

Meanwhile, Deimos measures about 12 km (7.5 mi) and orbits the planet at a distance of 23,455.5 km (periapsis) and 23,470.9 km (apoapsis). It has a longer orbital period, taking 1.26 days to complete a full rotation around the planet. Mars may have additional moons that are smaller than 50- 100 meters (160 to 330 ft) in diameter, and a dust ring is predicted between Phobos and Deimos.

Scientists believe that these two satellites were once asteroids that were captured by the planet’s gravity. The low albedo and the carboncaceous chondrite composition of both moons – which is similar to asteroids – supports this theory, and Phobos’ unstable orbit would seem to suggest a recent capture. However, both moons have circular orbits near the equator, which is unusual for captured bodies.

So while Earth has a single satellite that is quite large and dense, Mars has two satellites that are small and orbit it at a comparatively close distance. And whereas the Moon was formed from Earth’s own debris after a rather severe collision, Mars’ satellites were likely captured asteroids.


Okay, let’s review. Earth and Mars have their share of similarities, but also some rather stark differences.

Mean Radius:                6,371 km                      3,396 km

Mass:                                59.7×1023 kg              6.42 x 10²³ kg

Volume:                           10.8 x 1011 km3         1.63 x 10¹¹ km³

Semi-Major Axis:         0.983 – 1.015 AU      1.3814 – 1.666 AU

Air Pressure:                 101.325 kPa                0.4 – 0.87 kPa

Gravity:                            9.8 m/s²                     3.711 m/s²

Avg. Temperature:      14°C (57.2 °F)            -46 °C (-51 °F)

Temp. Variations:       ±160 °C (278°F)        ±178 °C (320°F)

Axial Tilt:                          23°                               25.19°

Length of Day:               24 hours                     24h 40m

Length of Year:             365.25 days                686.971 days

Water:                              Plentiful                      Intermittent (mostly frozen)

Polar Ice Caps:               Yep                              Yep

In short, compared to Earth, Mars is a pretty small, dry, cold, and dusty planet. It has comparatively low gravity, very little atmosphere and no breathable air. And the years are also mighty long, almost twice that of Earth, in fact. However, the planet does have its fair share of water (albeit mostly in ice form), has seasonal cycles similar to Earth, temperature variations that are similar, and a day that is almost as long.

All of these factors will have to be addressed if ever human beings want to live there. And whereas some can be worked with, others will have to be overcome or adapted to. And for that, we will have to lean pretty heavily on our technology (i.e. terraforming and geoengineering). Best of luck to those who would like to venture there someday, and who do not plan on coming home!

We have written many articles about Mars here on Universe Today. Here’s an article about how difficult it will be to land large payloads onto the surface of Mars, and here’s an article about the Mars methane mystery.

And here are some on the distance between Earth and Mars, Mars’ gravity, and if humans can live on Mars.

If you’d like more info on Mars, check out Hubblesite’s News Releases about Mars, and here’s a link to the NASA Mars Exploration home page.

And be sure to check out NASA’s Solar System Exploration: Earth and Mars Comparison Chart

We have recorded several podcasts just about Mars. Including Episode 52: Mars and Episode 92: Missions to Mars, Part 1.


What are the Earth’s Layers?

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

There is more to the Earth than what we can see on the surface. In fact, if you were able to hold the Earth in your hand and slice it in half, you’d see that it has multiple layers. But of course, the interior of our world continues to hold some mysteries for us. Even as we intrepidly explore other worlds and deploy satellites into orbit, the inner recesses of our planet remains off limit from us.

However, advances in seismology have allowed us to learn a great deal about the Earth and the many layers that make it up. Each layer has its own properties, composition, and characteristics that affects many of the key processes of our planet. They are, in order from the exterior to the interior – the crust, the mantle, the outer core, and the inner core. Let’s take a look at them and see what they have going on.

Modern Theory:

Like all terrestrial planets, the Earth’s interior is differentiated. This means that its internal structure consists of layers, arranged like the skin of an onion. Peel back one, and you find another, distinguished from the last by its chemical and geological properties, as well as vast differences in temperature and pressure.

Our modern, scientific understanding of the Earth’s interior structure is based on inferences made with the help of seismic monitoring. In essence, this involves measuring sound waves generated by earthquakes, and examining how passing through the different layers of the Earth causes them to slow down. The changes in seismic velocity cause refraction which is calculated (in accordance with Snell’s Law) to determine differences in density.

Model of a flat Earth
Model of a flat Earth, with the continents modeled in a disk-shape and Antarctica as an ice wall. Credit: Wikipedia Commons

These are used, along with measurements of the gravitational and magnetic fields of the Earth and experiments with crystalline solids that simulate pressures and temperatures in the Earth’s deep interior, to determine what Earth’s layers looks like. In addition, it is understood that the differences in temperature and pressure are due to leftover heat from the planet’s initial formation, the decay of radioactive elements, and the freezing of the inner core due to intense pressure.

History of Study:

Since ancient times, human beings have sought to understand the formation and composition of the Earth. The earliest known cases were unscientific in nature – taking the form of creation myths or religious fables involving the gods. However, between classical antiquity and the medieval period, several theories emerged about the origin of the Earth and its proper makeup.

Most of the ancient theories about Earth tended towards the “Flat-Earth” view of our planet’s physical form. This was the view in Mesopotamian culture, where the world was portrayed as a flat disk afloat in an ocean. To the Mayans, the world was flat, and at it corners, four jaguars (known as bacabs) held up the sky. The ancient Persians speculated that the Earth was a seven-layered ziggurat (or cosmic mountain), while the Chinese viewed it as a four-side cube.

By the 6th century BCE, Greek philosophers began to speculate that the Earth was in fact round, and by the 3rd century BCE, the idea of a spherical Earth began to become articulated as a scientific matter. During the same period, the development of a geological view of the Earth also began to emerge, with philosophers understanding that it consisted of minerals, metals, and that it was subject to a very slow process of change.

Edmond Halley's model of a Hallow Earth, one that was made up of concentric spheres.
Illustration of Edmond Halley’s model of a Hallow Earth, one that was made up of concentric spheres. Credit: Wikipedia Commons/Rick Manning

However, it was not until the 16th and 17th centuries that a scientific understanding of planet Earth and its structure truly began to advance. In 1692, Edmond Halley (discoverer of Halley’s Comet) proposed what is now known as the “Hollow-Earth” theory. In a paper submitted to Philosophical Transactions of Royal Society of London, he put forth the idea of Earth consisting of a hollow shell about 800 km thick (~500 miles).

Between this and an inner sphere, he reasoned there was an air gap of the same distance. To avoid collision, he claimed that the inner sphere was held in place by the force of gravity. The model included two inner concentric shells around an innermost core, corresponding to the diameters of the planets Mercury, Venus, and Mars respectively.

Halley’s construct was a method of accounting for the values of the relative density of Earth and the Moon that had been given by Sir Isaac Newton, in his Philosophiæ Naturalis Principia Mathematica (1687) – which were later shown to be inaccurate. However, his work was instrumental to the development of geography and theories about the interior of the Earth during the 17th and 18th centuries.

Another important factor was the debate during the 17th and 18th centuries about the authenticity of the Bible and the Deluge myth. This propelled scientists and theologians to debate the true age of the Earth, and compelled the search for evidence that the Great Flood had in fact happened. Combined with fossil evidence, which was found within the layers of the Earth, a systematic basis for identifying and dating the Earth’s strata began to emerge.

Credit: minerals.usgs.gov
The growing importance of mining in the 17th and 18th centuries, particularly for precious metals, led to further developments in geology and Earth sciences. Credit: minerals.usgs.gov

The development of modern mining techniques and growing attention to the importance of minerals and their natural distribution also helped to spur the development of modern geology. In 1774, German geologist Abraham Gottlob Werner published Von den äusserlichen Kennzeichen der Fossilien (On the External Characters of Minerals) which presented a detailed system for identifying specific minerals based on external characteristics.

In 1741, the National Museum of Natural History in France created the first teaching position designated specifically for geology. This was an important step in further promoting knowledge of geology as a science and in recognizing the value of widely disseminating such knowledge. And by 1751, with the publication of the Encyclopédie by Denis Diderot, the term “geology” became an accepted term.

By the 1770s, chemistry was starting to play a pivotal role in the theoretical foundation of geology, and theories began to emerge about how the Earth’s layers were formed. One popular idea had it that liquid inundation, like the Biblical Deluge, was responsible for creating all the geological strata. Those who accepted this theory became known popularly as the Diluvianists or Neptunists.

Another thesis slowly gained currency from the 1780s forward, which stated that instead of water, strata had been formed through heat (or fire). Those who followed this theory during the early 19th century referred to this view as Plutonism, which held that the Earth formed gradually through the solidification of molten masses at a slow rate. These theories together led to the conclusion that the Earth was immeasurably older than suggested by the Bible.

HMS Beagle in the Galapagos (painted by John Chancellor) - Credit: hmsbeagleproject.otg
HMS Beagle in the Galapagos Islands, painted by John Chancellor. Credit: hmsbeagleproject.otg

In the early 19th century, the mining industry and Industrial Revolution stimulated the rapid development of the concept of the stratigraphic column – that rock formations were arranged according to their order of formation in time. Concurrently, geologists and natural scientists began to understand that the age of fossils could be determined geologically (i.e. that the deeper the layer they were found in was from the surface, the older they were).

During the imperial period of the 19th century, European scientists also had the opportunity to conduct research in distant lands. One such individual was Charles Darwin, who had been recruited by Captain FitzRoy of the HMS Beagle to study the coastal land of South America and give geological advice.

Darwin’s discovery of giant fossils during the voyage helped to establish his reputation as a geologist, and his theorizing about the causes of their extinction led to his theory of evolution by natural selection, published in On the Origin of Species in 1859.

During the 19th century, the governments of several countries including Canada, Australia, Great Britain and the United States began funding geological surveys that would produce geological maps of vast areas of the countries. Thought largely motivated by territorial ambitions and resource exploitation, they did benefit the study of geology.

The Earth's Tectonic Plates. Credit: msnucleus.org
The Earth’s Tectonic Plates. Credit: msnucleus.org

By this time, the scientific consensus established the age of the Earth in terms of millions of years, and the increase in funding and the development of improved methods and technology helped geology to move farther away from dogmatic notions of the Earth’s age and structure.

By the early 20th century, the development of radiometric dating (which is used to determine the age of minerals and rocks), provided the necessary the data to begin getting a sense of the Earth’s true age. By the turn of the century, geologists now believed the Earth to be 2 billion years old, which opened doors for theories of continental movement during this vast amount of time.

In 1912, Alfred Wegener proposed the theory of Continental Drift, which suggested that the continents were joined together at a certain time in the past and formed a single landmass known as Pangaea. In accordance with this theory, the shapes of continents and matching coastline geology between some continents indicated they were once attached together.

The super-continent Pangea during the Permian period (300 - 250 million years ago). Credit: NAU Geology/Ron Blakey
The super-continent Pangea during the Permian period (300 – 250 million years ago). Credit: NAU Geology/Ron Blakey

Research into the ocean floor also led directly to the theory of Plate Tectonics, which provided the mechanism for Continental Drift. Geophysical evidence suggested lateral motion of continents and that oceanic crust is younger than continental crust. This geophysical evidence also spurred the hypothesis of paleomagnetism, the record of the orientation of the Earth’s magnetic field recorded in magnetic minerals.

Then there was the development of seismology, the study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies, in the early 20th century. By measuring the time of travel of refracted and reflected seismic waves, scientists were able to gradually infer how the Earth was layered and what lay deeper at its core.

For example, in 1910, Harry Fielding Ried put forward the “elastic rebound theory”, based on his studies of the 1906 San Fransisco earthquake. This theory, which stated that earthquakes occur when accumulated energy is released along a fault line, was the first scientific explanation for why earthquakes happen, and remains the foundation for modern tectonic studies.

Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA
Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA

Then in 1926, English scientist Harold Jeffreys claimed that below the crust, the core of the Earth is liquid, based on his study of earthquake waves. And then in 1937, Danish seismologist Inge Lehmann went a step further and determined that within the earth’s liquid outer core, there is a solid inner core.

By the latter half of the 20th century, scientists developed a comprehensive theory of the Earth’s structure and dynamics had formed. As the century played out, perspectives shifted to a more integrative approach, where geology and Earth sciences began to include the study of the Earth’s internal structure, atmosphere, biosphere and hydrosphere into one.

This was assisted by the development of space flight, which allowed for Earth’s atmosphere to be studied in detail, as well as photographs taken of Earth from space. In 1972, the Landsat Program, a series of satellite missions jointly managed by NASA and the U.S. Geological Survey, began supplying satellite images that provided geologically detailed maps, and have been used to predict natural disasters and plate shifts.

Earth’s Layers:

The Earth can be divided into one of two ways – mechanically or chemically. Mechanically – or rheologically, meaning the study of liquid states – it can be divided into the lithosphere, asthenosphere, mesospheric mantle, outer core, and the inner core. But chemically, which is the more popular of the two, it can be divided into the crust, the mantle (which can be subdivided into the upper and lower mantle), and the core – which can also be subdivided into the outer core, and inner core.

The inner core is solid, the outer core is liquid, and the mantle is solid/plastic. This is due to the relative melting points of the different layers (nickel–iron core, silicate crust and mantle) and the increase in temperature and pressure as depth increases. At the surface, the nickel-iron alloys and silicates are cool enough to be solid. In the upper mantle, the silicates are generally solid but localized regions of melt exist, leading to limited viscosity.

In contrast, the lower mantle is under tremendous pressure and therefore has a lower viscosity than the upper mantle. The metallic nickel–iron outer core is liquid because of the high temperature. However, the intense pressure, which increases towards the inner core, dramatically changes the melting point of the nickel–iron, making it solid.

The differentiation between these layers is due to processes that took place during the early stages of Earth’s formation (ca. 4.5 billion years ago). At this time, melting would have caused denser substances to sink toward the center while less-dense materials would have migrated to the crust. The core is thus believed to largely be composed of iron, along with nickel and some lighter elements, whereas less dense elements migrated to the surface along with silicate rock.

Earth’s Crust:

The crust is the outermost layer of the planet, the cooled and hardened part of the Earth that ranges in depth from approximately 5-70 km (~3-44 miles). This layer makes up only 1% of the entire volume of the Earth, though it makes up the entire surface (the continents and the ocean floor).

The Earth's layers (strata) shown to scale. Credit: pubs.usgs.gov
The Earth’s layers (strata) shown to scale. Credit: pubs.usgs.gov

The thinner parts are the oceanic crust, which underlies the ocean basins at a depth of 5-10 km (~3-6 miles), while the thicker crust is the continental crust. Whereas the oceanic crust is composed of dense material such as iron magnesium silicate igneous rocks (like basalt), the continental crust is less dense and composed of sodium potassium aluminum silicate rocks, like granite.

The uppermost section of the mantle (see below), together with the crust, constitutes the lithosphere – an irregular layer with a maximum thickness of perhaps 200 km (120 mi). Many rocks now making up Earth’s crust formed less than 100 million (1×108) years ago. However, the oldest known mineral grains are 4.4 billion (4.4×109) years old, indicating that Earth has had a solid crust for at least that long.

Upper Mantle:

The mantle, which makes up about 84% of Earth’s volume, is predominantly solid, but behaves as a very viscous fluid in geological time. The upper mantle, which starts at the “Mohorovicic Discontinuity” (aka. the “Moho” – the base of the crust) extends from a depth of 7 to 35 km (4.3 to 21.7 mi) downwards to a depth of 410 km (250 mi). The uppermost mantle and the overlying crust form the lithosphere, which is relatively rigid at the top but becomes noticeably more plastic beneath.

Compared to other strata, much is known about the upper mantle, thanks to seismic studies and direct investigations using mineralogical and geological surveys. Movement in the mantle (i.e. convection) is expressed at the surface through the motions of tectonic plates. Driven by heat from deeper in the interior, this process is responsible for Continental Drift, earthquakes, the formation of mountain chains, and a number of other geological processes.

Computer simulation of the Earth's field in a period of normal polarity between reversals.[1] The lines represent magnetic field lines, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and vertical. The dense clusters of lines are within the Earth's core
Computer simulation of the Earth’s field in a period of normal polarity between reversals.  Credit: science.nasa.gov
The mantle is also chemically distinct from the crust, in addition to being different in terms of rock types and seismic characteristics. This is due in large part to the fact that the crust is made up of solidified products derived from the mantle, where the mantle material is partially melted and viscous. This causes incompatible elements to separate from the mantle, with less dense material floating upward and solidifying at the surface.

The crystallized melt products near the surface, upon which we live, are typically known to have a lower magnesium to iron ratio and a higher proportion of silicon and aluminum. These changes in mineralogy may influence mantle convection, as they result in density changes and as they may absorb or release latent heat as well.

In the upper mantle, temperatures range between 500 to 900 °C (932 to 1,652 °F). Between the upper and lower mantle, there is also what is known as the transition zone, which ranges in depth from 410-660 km (250-410 miles).

Lower Mantle:

The lower mantle lies between 660-2,891 km (410-1,796 miles) in depth. Temperatures in this region of the planet can reach over 4,000 °C (7,230 °F) at the boundary with the core, vastly exceeding the melting points of mantle rocks. However, due to the enormous pressure exerted on the mantle, viscosity and melting are very limited compared to the upper mantle. Very little is known about the lower mantle apart from that it appears to be relatively seismically homogeneous.

The internal structure of Earth. Credit: Wikipedia Commons/Kelvinsong
The internal structure of Earth. Credit: Wikipedia Commons/Kelvinsong

Outer Core:

The outer core, which has been confirmed to be liquid (based on seismic investigations), is 2300 km thick, extending to a radius of ~3,400 km. In this region, the density is estimated to be much higher than the mantle or crust, ranging between 9,900 and 12,200 kg/m3. The outer core is believed to be composed of 80% iron, along with nickel and some other lighter elements.

Denser elements, like lead and uranium, are either too rare to be significant or tend to bind to lighter elements and thus remain in the crust. The outer core is not under enough pressure to be solid, so it is liquid even though it has a composition similar to that of the inner core. The temperature of the outer core ranges from 4,300 K (4,030 °C; 7,280 °F) in the outer regions to 6,000 K (5,730 °C; 10,340 °F) closest to the inner core.

Because of its high temperature, the outer core exists in a low viscosity fluid-state that undergoes turbulent convection and rotates faster than the rest of the planet. This causes eddy currents to form in the fluid core, which in turn creates a dynamo effect that is believed to influence Earth’s magnetic field. The average magnetic field strength in Earth’s outer core is estimated to be 25 Gauss (2.5 mT), which is 50 times the strength of the magnetic field measured on Earth’s surface.

Inner Core:

Like the outer core, the inner core is composed primarily of iron and nickel and has a radius of ~1,220 km. Density in the core ranges between 12,600-13,000 kg/m³, which suggests that there must also be a great deal of heavy elements there as well – such as gold, platinum, palladium, silver and tungsten.

Artist’s illustration of Earht's core via Huff Post Science
Artist’s illustration of Earth’s core, inner core, and inner-inner core. Credit: Huff Post Science

The temperature of the inner core is estimated to be about 5,700 K (~5,400 °C; 9,800 °F). The only reason why iron and other heavy metals can be solid at such high temperatures is because their melting temperatures dramatically increase at the pressures present there, which ranges from about 330 to 360 gigapascals.

Because the inner core is not rigidly connected to the Earth’s solid mantle, the possibility that it rotates slightly faster or slower than the rest of Earth has long been considered. By observing changes in seismic waves as they passed through the core over the course of many decades, scientists estimate that the inner core rotates at a rate of one degree faster than the surface. More recent geophysical estimates place the rate of rotation between 0.3 to 0.5 degrees per year relative to the surface.

Recent discoveries also suggest that the solid inner core itself is composed of layers, separated by a transition zone about 250 to 400 km thick. This new view of the inner core, which contains an inner-inner core, posits that the innermost layer of the core measures 1,180 km (733 miles) in diameter, making it less than half the size of the inner core. It has been further speculated that while the core is composed of iron, it may be in a different crystalline structure that the rest of the inner core.

What’s more, recent studies have led geologists to conjecture that the dynamics of deep interior is driving the Earth’s inner core to expand at the rate of about 1 millimeter a year. This occurs mostly because the inner core cannot dissolve the same amount of light elements as the outer core.

The freezing of liquid iron into crystalline form at the inner core boundary produces residual liquid that contains more light elements than the overlying liquid. This in turn is believed to cause the liquid elements to become buoyant, helping to drive convection in the outer core. This growth is therefore likely to play an important role in the generation of Earth’s magnetic field by dynamo action in the liquid outer core. It also means that the Earth’s inner core, and the processes that drive it, are far more complex than previously thought!

Yes indeed, the Earth is a strange and mysteries place, titanic in scale as well as the amount of heat and energy that went into making it many billions of years ago. And like all bodies in our universe, the Earth is not a finished product, but a dynamic entity that is subject to constant change. And what we know about our world is still subject to theory and guesswork, given that we can’t examine its interior up close.

As the Earth’s tectonic plates continue to drift and collide, its interior continues to undergo convection, and its core continues to grow, who knows what it will look like eons from now? After all, the Earth was here long before we were, and will likely continue to be long after we are gone.

We have written many articles about Earth for Universe Today. Here’s are some Interesting Facts about Earth, and here’s one about the Earth’s inner inner core, and another about how minerals stop transferring heat at the core.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about Earth. Listen here, Episode 51: Earth.

Jupiter’s Moon Ganymede


In 1610, Galileo Galilei looked up at the night sky through a telescope of his own design. Spotting Jupiter, he noted the presence of several “luminous objects” surrounding it, which he initially took for stars. In time, he would notice that these “stars” were orbiting the planet, and realized that they were in fact Jupiter’s moons – which would come to be named Io, Europa, Ganymede and Callisto.

Of these, Ganymede is the largest, and boasts many fascinating characteristics. In addition to being the largest moon in the Solar System, it is also larger than even the planet Mercury. It is the only satellite in the Solar System known to possess a magnetosphere, has a thin oxygen atmosphere, and (much like its fellow-moons, Europa and Callisto) is believed to have an interior ocean.

Continue reading “Jupiter’s Moon Ganymede”