Moon’s Mini-Magnetosphere

Many objects in the solar system have strong magnetic fields which deflect the charged particles of the solar wind, creating a bubble known as the magnetosphere. On Earth, this protects us from some of the more harmful solar rays and diverts them to create beautiful aurorae. Similar displays have been found to occur on the gas giants. However, many other objects in our solar system lack the ability to produce these effects, either because they don’t have a strong magnetic field (such as Venus), or an atmosphere with which the charged particles can interact (such as Mercury).

Although the moon lacks both of these, a new study has found that the moon may still produce localized “mini-magnetospheres”. The team responsible for this discovery is an international team composed of astronomers from Sweden, India, Switzerland, and Japan. It is based on observations from the Chandrayaan-1 spacecraft produced and launched by the Indian Space Research Organisation (ISRO).

Using this satellite, the team was mapping the density of backscattered hydrogen atoms that come from solar wind striking the surface and being reflected. Under normal conditions, 16-20% of incoming protons from the solar wind is reflected in this way.

For those excited above 150 electron volts, the team found a region near the Crisium antipode (the region directly opposite the Mare Crisium on the moon). This region was previously discovered to have magnetic anomalies in which the local magnetic field strength reached several hundred nanotesla. The new team found that the result of this was that incoming solar wind was deflected, creating a shielded region some 360 km in diameter surrounded by a “300-km-thick region of enhanced plasma flux that results from the solar wind flowing 23 around the mini-magnetosphere.” Although the flow bunches up, the team finds that the lack of a distinct boundary means that there is not likely to be a bow shock, which would be created as the buildup becomes sufficiently strong to directly interact with additional incoming particles.

Below energies of 100 eV, the phenomenon seems to disappear. The researchers suggest this points to a different formation mechanism. One possibility is that some solar flux breaks through the magnetic barrier and is reflected creating these energies. Another is that, instead of hydrogen nuclei (which composes the majority of the solar wind) this is the product of alpha particles (helium nuclei) or other heavier solar wind ions striking the surface.

Not discussed in the paper is just how valuable such features could be to future astronauts looking to create a base on the moon. While the field is relatively strong for local magnetic fields, it it still around two orders of magnitude weaker than that of Earth’s. Thus, it is unlikely that this effect would be sufficiently strong to protect a base, nor would it provide protection from the x-rays and other dangerous electromagnetic radiation that is provided by an atmosphere.

Instead, this finding poses more in the way of scientific curiosity and can help astronomers map local magnetic fields as well as investigate the solar wind if such mini-magnetospheres are located on other bodies. The authors suggest that similar features be searched for on Mercury and asteroids.

Magnetic North Pole

The movement of Earth's north magnetic pole across the Canadian arctic, 1831--2001 (Geological Survey of Canada)
The movement of Earth's north magnetic pole across the Canadian arctic, 1831--2001 (Geological Survey of Canada)

[/caption]

The Earth has a magnetic field, known as the magnetosphere, that protects our planet from the particles of the solar winds. One point of that field is known as the Magnetic North Pole. The Magnetic North Pole is not the geographic North Pole; it is actually hundreds of miles south of the geographic North Pole and north of Canada.

Hundreds of years ago, European navigators believed that the needles of compasses were attracted to some “magnetic mountain” or “island” thought to be located in the far north. Some also believed that the needles could be attracted to the Pole Star, which is part of the Ursa Minor constellation and has long been used in navigation. One English philosopher, William Gilbert, proposed that the Earth acts like a giant magnet; he also was the first person to state that the Earth’s magnetic field points vertically downward at the Magnetic North Pole. It took hundreds of years before scientists came to properly understand our planet’s magnetic field, although this is known to be correct now.

All magnets have two poles, like the “plus” and “minus” signs found on batteries. Instead of these locations being named plus and minus though, they were named the North and South Magnetic Poles. It is toward the Magnetic North Pole that your compass points not the geographic North Pole, which makes sense considering it utilizes magnets to determine direction. At the Magnetic North Pole, the magnetic fields points down vertically; in other words it has a 90° “dip” toward the Earth’s surface. The counterpart of the Magnetic North Pole is the Magnetic South Pole. Because the Earth’s magnetic field is not perfectly symmetrical, the magnetic fields are not antipodal. That means that if you draw a straight line between them, it does not pass through the Earth’s center. It is off by approximately 530 km. The North and South Magnetic Poles are also known as Magnetic Dip Poles because they “dip” at a 90° angle towards the Earth.   

The Magnetic North Pole continues to move around. According to the Geological Survey of Canada, which routinely studies the Magnetic North Pole, the pole moves as much as 40 km per year. It also moves daily. Every day, the Magnetic North Pole has an elliptical movement of approximately 80 km from the average point of its center. That means when you are using a compass, you have to be aware of the difference between magnetic north and geographic north.

Universe Today has articles on Earth’s magnetic field and modeling the Earth’s magnetic field.

For more information, check out the Magnetic North Pole and geomagnetism.

Astronomy Cast has an episode on Earth.

References:
Earth’s Inconstant Magnetic Field
Earth’s Magnetic Field and its Changes in Time

Branson Wants to Fly Space Tourists into the Northern Lights

aurora_iss.thumbnail.jpg

For his next big plan for the private space industry, Richard Branson is thinking up new ways to excite affluent space tourists: flying them into the biggest lightshow on Earth, the Aurora Borealis. Although the New Mexico Virgin Galactic Spaceport isn’t scheduled for completion until 2010, the British entrepreneur is already planning his next project intended for cruises into the spectacular space phenomenon from an Arctic launchpad.

Located in the far north of Sweden (in the Lapland province), the small town of Kiruna has a long history of space observation and rocket launches. The Arctic location provides the town with unrivalled views of the Aurora Borealis as it erupts overhead. The Auroral lightshow is generated by atmospheric reactions to impacting solar wind particles as they channel along the Earth’s magnetic field and down into the thickening atmospheric gases.

Once a view exclusive only to sounding rockets, this awe inspiring sight may in the future be seen from the inside, and above, by fee-paying space tourists as they are launched into space from a new spaceport, on the site of an existing base called Esrange. Although launching humans into an active aurora holds little scientific interest (if it did, it would have probably been done by now), it does pose some prudent health and safety questions. As Dr Olle Norberg, Esrange’s director, confidently states: “Is there a build-up of charge on the spacecraft? What is the radiation dose that you would receive? Those studies came out saying it is safe to do this.” Phew, that’s a relief.

The chance to actually be inside this magnificent display of light will be an incredible selling point for Virgin Galactic and their SpaceShipTwo flights. As if going into space were not enough, you can see and fly through the atmosphere at it’s most magnificent too.

Source: The Guardian Unlimited