“With a Little Help From Their Friends,” Magnetars Form in Binary Systems, New Study Suggests

Astronomy is a discipline of extremes. We’re constantly searching for the most powerful, the most explosive, and the most energetic objects in the Universe. Magnetars — extremely dense and highly magnetic neutron stars — are no exception to the rule. They’re the strongest known magnets in the Universe, millions of times more powerful than the strongest magnets on Earth.

But their origin has eluded astronomers for 35 years. Now, an international team of astronomers think they’ve found the partner star of a magnetar for the first time, an observation that suggests magnetars form in binary star systems.

When the core of a massive star runs out of energy, it collapses to form an incredibly dense neutron star or black hole. Meanwhile the outer layers of the star blow away in a stupendously powerful explosion, known as a supernova. A teaspoon of “neutron star stuff” would have a mass of about a billion tonnes, and a few cups would outweigh Mount Everest.

Magnetars are an unusual form of neutron stars with powerful magnetic fields. While there are roughly a dozen known magnetars in the Milky Way, one stands out as being the most peculiar. CXOU J164710.2-455216 — located 16,000 light-years away in the young star cluster Westerlund 1 — is unlike any other magnetar because astronomers can’t see how it formed in the first place.

Astronomers estimate that this magnetar must have been born in the explosive death of a star about 40 times the mass of the Sun. “But this presents its own problem, since stars this massive are expected to collapse to form black holes after their deaths, not neutron stars,” said Simon Clark, lead author on the paper, in a press release. “We did not understand how it could have become a magnetar.”

So astronomers went back to the drawing board. The most promising solution suggested that the magnetar formed through the interactions of two massive stars orbiting one another. Once the more massive star began to run out of fuel, it transferred mass to the less massive companion, causing it to rotate more and more rapidly — a crucial ingredient to creating ultra-strong magnetic fields.

In turn, the companion star became so massive that it shed a large amount of its recently gained mass. This caused it “to shrink to low enough levels that a magnetar was born instead of a black hole — a game of stellar pass-the-parcel with cosmic consequences” said coauthor Francisco Najarro from the Centro de Astrobiología in Spain.

This image of the young star cluster Westerlund 1 was taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. Although most stars in the cluster are hot blue supergiants, they appear reddish in this image as they are seen through interstellar dust and gas. European astronomers have for the first time demonstrated that the magnetar in this cluster — an unusual type of neutron star with an extremely strong magnetic field — probably was formed as part of a binary star system. The discovery of the magnetar’s former companion (Westerlund 1-5) elsewhere in the cluster helps solve the mystery of how a star that started off so massive could become a magnetar, rather than collapse into a black hole. Credit: ESO
This image shows both the magnetar and its former binary companion, which has been kicked far away. Image Credit: ESO

There was only one slight problem: no companion star had been found. So Clark and colleagues set out to search for a star in other parts of the cluster. They used ESO’s Very Large Telescope to hunt for a hypervelocity star — an object escaping the cluster at an incredible speed — that might have been kicked out of orbit by the supernova explosion that formed the magnetar.

One star, known as Westerlund 1-5, matched their prediction.

“Not only does this star have the high velocity expected if it is recoiling from a supernova explosion, but the combination of its low mass, high luminosity and carbon-rich composition appear impossible to replicate in a single star — a smoking gun that shows it must have originally formed with a binary companion,” said coauthor Ben Ritchie from Open University.

The discovery suggests that double star systems may be essential for forming these enigmatic stars.

The paper has been published in Astronomy & Astrophysics, and is available for download here.

NASA’s Rossi X-Ray Timing Explorer Retires


For more than 16 years, 2,200 papers in refereed journals, 92 doctoral theses, and more than 1,000 rapid notifications alerting astronomers around the globe to new astronomical activity, the NASA Rossi X-Ray Timing Explorer is now retired. It sent the last of its data on January 4th of this year and on January 5th the plucky little satellite was decommissioned. If you’re not familiar with Rossi’s activities, then picture sending back images and data on the extreme environments around white dwarfs, neutron stars and black holes… because that’s what made the mission famous.

On December 30, 1995, the mission was launched as XTE from Cape Canaveral, Florida on board a Delta II 7920 rocket. Within weeks it was named in honor of Bruno Rossi, an MIT astronomer and a pioneer of X-ray astronomy and space plasma physics who died in 1993. However, the mission itself didn’t die – it excelled with honors. The entire scientific community recognized the importance of RXTE research and bestowed it with five awards – four Rossi Prizes (1999, 2003, 2006 and 2009) from the High Energy Astrophysics Division of the AAS and the 2004 NWO Spinoza prize, the highest Dutch science award, from the Netherlands Organization for Scientific Research.

On board, the Rossi was three scientific instruments housed in one unit. The first was the Proportional Counter Array (PCA), which was centered on the lower end of the energy band and was crafted by Goddard. The second instrument was the High Energy X-Ray Timing Experiment (HEXTE) that could be aimed at very specific targets and was manufactured by the University of California at San Diego for exploring the upper energy range. The last of the trio was the All-Sky Monitor developed by the Massachusetts Institute of Technology (MIT) in Cambridge. It took in about 80% of the sky during each orbit, delivering astronomers with an unprecedented amount of data on the wide variances of X-Ray sky and allowing them to record bright sources over a period of time as short as a few microseconds up to months. All of this information was taken in over a broad span of energy ranging from 2,000 to 250,000 electron volts.

The Rossi X-Ray Timing Explorer asked little and returned much. Over its operating lifetime it gave us new insight in the life cycles of neutron stars and black holes. Through its eyes we learned about magnetars and discovered the first accreting millisecond pulsar. But that’s not all. The RXTE provided hard evidence which supported Einstein’s theory by observing “frame dragging” in the neighborhood of a black hole. Even though the instrumentation would be considered antique by today’s standards, it certainly served its purpose. “The spacecraft and its instruments had been showing their age, and in the end RXTE had accomplished everything we put it up there to do, and much more,” said Tod Strohmayer, RXTE project scientist at Goddard.

According to the NASA news release, the decision to decommission RXTE followed the recommendations of a 2010 review board tasked to evaluate and rank each of NASA’s operating astrophysics missions. The three and a half ton satellite is expected to return to Earth sometime between the years 2014 and 2023, depending on solar activity. It will have a fiery end… burning out like the superstar that it was. To celebrate its career, the scientific community will hold a special session on RXTE during the 219th meeting of the American Astronomical Society (AAS) in Austin, Texas. The session is scheduled for Tuesday, January 10, at 3 p.m. CST. A press conference on new RXTE results will also be held at the meeting on January 10 at 1:45 p.m. EST. The decision to decommission RXTE followed the recommendations of a 2010 review board tasked to evaluate and rank each of NASA’s operating astrophysics missions. “After two days we listened to verify that none of the systems we turned off had autonomously re-activated, and we’ve heard nothing,” said Deborah Knapp, RXTE mission director at Goddard.

On the contrary… We heard a lot from Rossi!

Original Story Source: NASA News Release.

Even ‘Weakling’ Magnetars are Strong and Powerful


The name alone, “magnetar” elicits a magnificent, powerful and strong astronomical object, and most of these “magnetic stars” are whirling, X-ray blasting dynamos, shooting out strong bursts of energy. But there are some magnetars which seem to have a softer, quieter side, and are called soft gamma repeaters and anomalous X-ray pulsars. However, they might not be as soft as they appear. A team of astronomers using the several different space- and Earth-based observatories have found a supposed ‘weakling’ was only masking its superpowers. The new findings indicate the presence of a huge internal magnetic field in these seemingly less powerful pulsars, which is not matched by their surface magnetic field.

Magnetars are a type of neutron stars, which are the collapsed remains of massive, rapidly rotating stars. They collapses down to tiny cores, with the hot neutron liquid rising and falling from the center to the crust setting up a dynamo effect, creating that incredible magnetic field. Although they are on average only about 30km in diameter, a magnetar can have a magnetic field billions of times that of our Sun.

It was thought that dramatic flares and bursts of energy came from only the strong class of magnetars, but these same features have been observed emanating from a weakly magnetized, slowly rotating pulsar.

“We have now discovered bursts and flares, i.e. magnetar-like activity, from a new pulsar whose magnetic field is very low,” said Dr Silvia Zane, from UCL’s (University College London) Mullard Space Science Laboratory, and an author of the research.

The neutron star, SGR 0418+5729, was discovered on June 5, 2009 when the Fermi Gamma-ray Space Telescope detected bursts of gamma-rays from this object. Follow-up observations four days later with the Rossi X-Ray Timing Explorer (RXTE) showed that, in addition to sporadic X-ray bursts, the neutron star exhibits persistent X-ray emission with regular pulsations that indicate that the star has a rotational period of 9.1 seconds.

What makes SGR 0418 different from similar neutron stars is that, unlike those stars that are observed to be gradually rotating more slowly, continued monitoring of SGR 0418 over a span of 490 days has revealed no evidence that its rotation is decreasing.

“It is the very first time this has been observed and the discovery poses the question of where the powering mechanism is in this case. At this point, we are also interested in how many of the other normal, low field neutron stars that populate the galaxy can at some point wake up and manifest themselves as a flaring source,” said Zane.

The team of astronomers, led by Dr. Nanda Rea of Institut de Ciencies de l’Espai (ICE-CSIC, IEEC) in Barcelona, wonder how large an imbalance can be maintained between the surface and interior magnetic fields. SGR 0418 represents an important test case.

“If further observations by Chandra and other satellites push the surface magnetic field limit lower, then theorists may have to dig deeper for an explanation of this enigmatic object,” said Rea.

Sources: Chandra Blog, University College, London (via Eurekalert)