The Kuiper Belt is Much Bigger Than We Thought

Artist’s concept of a collision between two objects in the distant Kuiper Belt. Such collisions are a major source of dust in the belt, along with particles kicked up from Kuiper Belt objects being peppered by microscopic dust impactors from outside of the solar system. Credit: Dan Durda, FIAAA

NASA’s New Horizons spacecraft is just over 8.8 billion km away, exploring the Kuiper Belt. This icy belt surrounds the Sun but it seems to have a surprise up its sleeve. It was expected that New Horizons would be leaving the region by now but it seems that it has detected elevated levels of dust that are thought to be from micrometeorite impacts within the belt. It suggests perhaps that the Kuiper Belt may stretch further from the Sun than we thought! 

Continue reading “The Kuiper Belt is Much Bigger Than We Thought”

How Many Planets Could Be in the Kuiper Belt?

A recent study published in The Astrophysical Journal Letters investigates the potential existence of Mars-sized free-floating planets (FFPs)—also known as rogue planets, starless planets, and wandering planets—that could have been captured by our Sun’s gravity long ago and orbit in the outer solar system approximately 1,400 astronomical units (AU) from the Sun. For context, the farthest known planetary body in the solar system is Pluto, which orbits approximately 39 AU from the Sun, and is also part of the Kuiper Belt, which scientists estimate extends as far out as 1,000 AU from the Sun.

Continue reading “How Many Planets Could Be in the Kuiper Belt?”

Under Some Conditions, Comets Could Deliver Organic Molecules to Planets

This artwork shows a rocky planet being bombarded by comets. Image credit: NASA/JPL-Caltech

Approximately 4.1 to 3.8 billion years ago, the planets of the inner Solar System experienced many impacts from comets and asteroids that originated in the outer Solar System. This is known as the Late Heavy Bombardment (LHB) period when (according to theory) the migration of the giant planets kicked asteroids and comets out of their regular orbits, sending them hurtling towards Mercury, Venus, Earth, and Mars. This bombardment is believed to have distributed water to the inner Solar System and maybe the building blocks of life itself.

According to new research from the University of Cambridge, comets must travel slowly – below 15 km/s (9.32 mi/s) – to deliver organic material onto other planets. Otherwise, the essential molecules would not survive the high speed and temperatures generated by atmospheric entry and impact. As the researchers found, such comets are only likely to occur in tightly bound systems where planets orbit closely to each other. Their results show that these systems would be a good place to look for evidence of life (biosignatures) beyond the Solar System.

Continue reading “Under Some Conditions, Comets Could Deliver Organic Molecules to Planets”

JWST Observes the Kuiper Belt: Sedna, Gonggong, and Quaoar

Artist's conception of Sedna, the TNO that orbits in the outer edges of the Solar System. Credit: NASA/JPL-Caltech

The Kuiper Belt, the vast region at the edge of our Solar System populated by countless icy objects, is a treasure trove of scientific discoveries. The detection and characterization of Kuiper Belt Objects (KBOs), sometimes referred to as Trans-Neptunian Objects (TNOs), has led to a new understanding of the history of the Solar System. The disposition of KBOs is an indicator of gravitational currents that have shaped the Solar System and reveal a dynamic history of planetary migrations. Since the late 20th century, scientists have been eager to get a closer look at KBOs to learn more about their orbits and composition.

Studying bodies in the outer Solar System is one of the many objectives of the James Webb Space Telescope (JWST). Using data obtained by Webb’s Near-Infrared Spectrometer (NIRSpec), an international team of astronomers observed three dwarf planets in the Kuiper Belt: Sedna, Gonggong, and Quaoar. These observations revealed several interesting things about their respective orbits and composition, including light hydrocarbons and complex organic molecules believed to be the product of methane irradiation.

Continue reading “JWST Observes the Kuiper Belt: Sedna, Gonggong, and Quaoar”

Pluto Team Updates Science From the Solar System’s Edge

Since its last flyby, of the Kuiper Belt object Arrokoth, the New Horizons mission has been exploring objects in the Kuiper Belt as well as performing heliospheric and astrophysical observations. Courtesy: Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute//Roman Tkachenko
Since its last flyby, of the Kuiper Belt object Arrokoth, the New Horizons mission has been exploring objects in the Kuiper Belt as well as performing heliospheric and astrophysical observations. Courtesy: Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute//Roman Tkachenko

Nearly eight years after its historic Pluto flyby, NASA’s New Horizons probe is getting ready for another round of observations made from the icy edge of the solar system — and this time, its field of view will range from Uranus and Neptune to the cosmic background far beyond our galaxy.

Scientists on the New Horizons team shared their latest discoveries, and provided a preview of what’s ahead, during this week’s Lunar and Planetary Science Conference in The Woodlands, Texas.

Continue reading “Pluto Team Updates Science From the Solar System’s Edge”

The Universe is Brighter Than we Thought

Artist's impression of NASA's New Horizons spacecraft. Credit: NASA/APL/SwRI and NASA/JPL-Caltech

Over seven years ago, the New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. In the leadup to this encounter, the spacecraft provided updated data and images of many objects in the inner and outer Solar System. Once beyond the orbit of Pluto and its moons, it embarked on a new mission: to make the first encounter with a Kuiper Belt Object (KBO). This historic flyby occurred about four years ago (Dec. 31st, 2015) when New Horizons zipped past Arrokoth (aka. 2014 MU69).

Now that it is passing through the Kuiper Belt, away from the light pollution of the inner Solar System, it has another lucrative mission: measuring the brightness of the Universe. These measurements will allow astronomers to make more accurate estimates of how many galaxies there are, which is still the subject of debate. According to new measurements by New Horizons, the light coming from stars beyond the Milky Way is two to three times brighter than the light from known populations of galaxies – meaning that there are even more out there than we thought!

Continue reading “The Universe is Brighter Than we Thought”

A Newly-Discovered (Almost) Dwarf Planet Will Come Surprisingly Close in 2031

It’s good to remember how little we know about the outer solar system.  Humans only really began observing it within the past 100 years, and given the constraints on that observations there are still plenty of things we don’t know about.  For example, researchers recently found an object almost the size of a dwarf planet that is inbound to the inner solar system, with an estimated orbital period of over 2 million years, more than six the lifetime of the modern human species.  

Continue reading “A Newly-Discovered (Almost) Dwarf Planet Will Come Surprisingly Close in 2031”

New Horizons is Now 50 Astronomical Units Away From the Sun

Currently exploring the Kuiper Belt, New Horizons is just one of five spacecraft to reach beyond 50 astronomical units, on its way out of the solar system and, eventually, into interstellar space. (Credit: NASA/Johns Hopkins APL/Southwest Research Institute)

As the New Horizons spacecraft hurtles out towards interstellar space, it has now reached an historical milestone. On April 17, 2021, New Horizons passed 50 astronomical units, or 50 times Earth’s distance from the Sun. It is just the 5th spacecraft to reach that distance, joining the Voyagers 1 and 2 and the Pioneers 10 and 11.

Continue reading “New Horizons is Now 50 Astronomical Units Away From the Sun”

New Horizons Saw the Universe With Even Less Light Pollution than Hubble’s View

Artist's impression of New Horizons' close encounter with the Pluto–Charon system. Credit: NASA/JHU APL/SwRI/Steve Gribben

In July of 2015, NASA’s New Horizons probe made history when it became the first mission ever to conduct a close flyby of Pluto. This was followed by the spacecraft making the first-ever encounter with a Kuiper Belt Object (KBO) – known as Arrokoth (aka. 2014 MU69) – on Dec.31st, 2018. In addition, its unique position in the outer Solar System has allowed astronomers to conduct rare and lucrative science operations.

This has included parallax measurements of Proxima Centauri and Wolf 359, the two closest stars to the Solar System. In addition, a team of astronomers led by the National Optical Astronomy Observatory (NOAO) and Southwest Research Institute (SwRI) used archival data from the probe’s Long Range Reconnaissance Imager (LORRI) to conduct measurements of the Cosmic Optical Background (COB).

Continue reading “New Horizons Saw the Universe With Even Less Light Pollution than Hubble’s View”