UK Professor Granted JWST Observation Time to Study Jupiter’s Upper Atmosphere

Professor Tom Stallard (Credit: Simon Veit-Wilson/Northumbria University)

A professor from Northumbria University in the North East region of England has been granted telescope time with NASA’s James Webb Space Telescope (JWST) later this year to study Jupiter’s upper atmosphere, also known as its ionosphere. Being granted such access to JWST is extremely competitive which makes getting access to use its powerful instruments to study the cosmos a very high honor.

Continue reading “UK Professor Granted JWST Observation Time to Study Jupiter’s Upper Atmosphere”

A Fascinating Look at Jupiter's Clouds Where the Light Intensity is Converted Into 3D

A still image from the 3D animation that shows the elevation of Jupiter's cloud tops. Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt

In July 2016, NASA’s Juno space probe reached Jupiter, becoming the second spacecraft in history to orbit the gas giant (the first being the Galileo probe that orbited Jupiter from 1995 to 2003). The data it has sent back has led to new revelations about the Jovian atmosphere, magnetosphere, gravitational field, structure, and composition. While its primary mission was intended to only last until 2018, a mission extension means that Juno will continue to orbit Jupiter’s poles (a perijove maneuver) and send back stunning images and data until 2025.

Recently, a team of citizen scientists led by mathematician and software developer Gerald Eichstädt used images taken by the probe’s visible-light camera/telescope (the JunoCam) to create a 3D animation of Jupiter’s upper atmosphere. Eichstädt’s animation was presented at the 2022 Europlanet Science Congress (EPSC), which took place from September 18 – 23 in Granada, and shows the relative heights of the cloud tops of Jupiter that reveal delicately textured swirls and peaks. Eichstädt’s work also showcased the potential for citizen science and public engagement with today’s missions.

Continue reading “A Fascinating Look at Jupiter's Clouds Where the Light Intensity is Converted Into 3D”

Jupiter is up to 9% Rock and Metal, Which Means it Ate a lot of Planets in its Youth

This image of Jupiter's turbulent atmosphere was taken by NASA's Juno spacecraft on December 30, 2020. Image Credit: NASA/JPL-Caltech/SwRI/MSSS

Jupiter is composed almost entirely of hydrogen and helium. The amounts of each closely conform to the theoretical quantities in the primordial solar nebula. But it also contains other heavier elements, which astronomers call metals. Even though metals are a small component of Jupiter, their presence and distribution tell astronomers a lot.

According to a new study, Jupiter’s metal content and distribution mean that the planet ate a lot of rocky planetesimals in its youth.

Continue reading “Jupiter is up to 9% Rock and Metal, Which Means it Ate a lot of Planets in its Youth”

Juno Peers Beneath Jupiter’s Clouds to Reveal its Complex Atmosphere

Many papers are usually released at once for big space exploration missions. Usually, that happens when an entire batch of data has been analyzed.  The most recent set of papers is from Juno’s explorations of Jupiter’s atmosphere.  With this data dump, scientists now have the first 3D map of the atmosphere of the solar system’s largest planet.

Continue reading “Juno Peers Beneath Jupiter’s Clouds to Reveal its Complex Atmosphere”

Bad News, Life Probably can’t Exist on Venus. Good News, it Could be in Jupiter’s Clouds

Jupiter from Juno Perijove 29 - NASA/JPL/Kevin Gil

For decades, scientists engaged in the search for life in the Universe (aka. astrobiology) have focused on searching for life on other Earth-like planets. These included terrestrial (aka. rocky) planets beyond our Solar System (extrasolar planets) and ones here at home. Beyond Earth, Mars is considered to be the most habitable planet next to Earth, and scientists have also theorized that life could exist (in microbial form) in the cloud tops of Venus.

In all cases, a major focal point is whether or not planets have large bodies of water on their surfaces (or did in the past). However, a new study led by a research team from the UK and German (with support from NASA) has shown that the existence of life may have less to do with the quantity of water and more to with the presence of atmospheric water molecules. As a result, we may have better luck finding life on Jupiter’s turbulent cloud deck than Venus’.

Continue reading “Bad News, Life Probably can’t Exist on Venus. Good News, it Could be in Jupiter’s Clouds”

Juno Just Saw a Spacerock Crash Into Jupiter

Timing is extraordinarily important in many aspects of astronomy.  If an astronomer or their instrument is looking the wrong way at the wrong time they could miss something spectacular.  Alternatively, there are moments when our instruments capture something unexpected in regions of space that we were searching for something else.  That is exactly what happened recently when a team of scientists, led by Rohini Giles at the Southwest Research Institute, saw an image of what is likely a meteor impacting Jupiter’s atmosphere.  

Continue reading “Juno Just Saw a Spacerock Crash Into Jupiter”

The Newest Picture of Jupiter and Europa Captured by Hubble

This latest image of Jupiter, taken by the NASA/ESA Hubble Space Telescope on 25 August 2020, was captured when the planet was 653 million kilometres from Earth. Hubble’s sharp view is giving researchers an updated weather report on the monster planet’s turbulent atmosphere, including a remarkable new storm brewing, and a cousin of the Great Red Spot changing colour — again. The new image also features Jupiter’s icy moon Europa. Credit: NASA, ESA, A. Simon (Goddard Space Flight Center), and M. H. Wong (University of California, Berkeley) and the OPAL team.

The venerable Hubble Space Telescope has given us another gorgeous picture of Jupiter and its moon Europa. The incredibly sharp image was captured on August 25th, and shows some of the stunning detail in Jupiter’s stormy atmosphere. Hidden in all that stormy activity is something new: a bright white storm plume travelling at about 560 km/h (350 mp/h).

Continue reading “The Newest Picture of Jupiter and Europa Captured by Hubble”

Here’s Jupiter from Juno’s Latest Flyby

Jupiter from Juno Perijove 29 - NASA/JPL/Kevin Gil


Most massive planet in the solar system – twice that of all the other planets combined. This giant world formed from the same cloud of dust and gas that became our Sun and the rest of the planets. But Jupiter was the first-born of our planetary family. As the first planet, Jupiter’s massive gravitational field likely shaped the rest of the entire solar system. Jupiter could’ve played a role in where all the planets aligned in their orbits around the Sun…or didn’t as the asteroid belt is a vast region which could’ve been occupied by another planet were it not for Jupiter’s gravity.  Gas giants like Jupiter can also hurl entire planets out of their solar systems, or themselves spiral into their stars. Saturn’s formation several million years later probably spared Jupiter this fate. Jupiter may also act as a “comet catcher.” Comets and asteroids which could otherwise fall toward the inner solar system and strike the rocky worlds like Earth are captured by Jupiter’s gravitational field instead and ultimately plunge into Jupiter’s clouds. But at other times in Earth’s history, Jupiter may have had the opposite effect, hurling asteroids in our direction – typically a bad thing but may have also resulted in water-rich rocks coming to Earth that led to the blue planet we know of today.

Early solar system and protoplanetary disk with a young Jupiter – c. NASA
Continue reading “Here’s Jupiter from Juno’s Latest Flyby”

Spacecraft and Ground Telescopes Work Together to Give us Stunning New Pictures of Jupiter

A Hubble Telescope image of Jupiter's Great Red Spot. A new effort is combining Hubble, Juno, and Gemini Observatory images in an effort to understand Jupiter's stormy behaviour. Image Credit: NASA, ESA, and M.H. Wong (UC Berkeley) and team

It’s difficult to imagine the magnitude of storms on Jupiter. The gas giant’s most visible atmospheric feature, the Great Red Spot, may be getting smaller, but one hundred years ago, it was about 40,000 km (25,000 miles) in diameter, or three times Earth’s diameter.

Jupiter’s atmosphere also features thunderheads that are five times taller than Earth’s: a whopping 64 km (40 miles) from bottom to top. Its atmosphere is not entirely understood, though NASA’s Juno spacecraft is advancing our understanding. The planet may contain strange things like a layer of liquid metallic hydrogen.

Now a group of scientists are combining the power of the Hubble Space Telescope, the Gemini Observatory and the Juno spacecraft to probe Jupiter’s atmosphere, and the awe-inspiring storms that spawn there.

Continue reading “Spacecraft and Ground Telescopes Work Together to Give us Stunning New Pictures of Jupiter”

Jupiter’s Atmospheric Bands Go Surprisingly Deep

Jupiter's colorful stripes are cloud belts that extend thousand of kilometers deep. NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

For centuries, astronomers have been observing Jupiter swirling surface and been awed and mystified by its appearance. The mystery only deepened when, in 1995, the Galileo spacecraft reached Jupiter and began studying its atmosphere in depth. Since that time, astronomers have puzzled over its colored bands and wondered if they are just surface phenomenon, or something that goes deeper.

Thanks to the Juno spacecraft, which has been orbiting Jupiter since July of 2016, scientists are now much closer to answering that question. This past week, three new studies were published based on Juno data that presented new findings on Jupiter’s magnetic field, its interior rotation, and how deep its belts extend. All of these findings are revising what scientists think of Jupiter’s atmosphere and its inner layers.

The studies were titled “Measurement of Jupiter’s asymmetric gravity field“, “Jupiter’s atmospheric jet streams extend thousands of kilometres deep” and “A suppression of differential rotation in Jupiter’s deep interior“, all of which were published in Nature on March 7th, 2018. The studies were led by Prof. Luciano Iess of Sapienza University of Rome, the second by Prof. Yohai Kaspi and Dr. Eli Galanti of the Weizmann Institute of Science, and the third by Prof. Tristan Guillot of the Observatoire de la Cote d’Azur.

Jupiter’s South Pole, taken during a Juno flyby on Dec 16th, 2017. Credit: NASA/JPL-Caltech/SwRI/MSSS/David Marriott

The research effort was led by Professo Kaspi and Dr. Galanti, who in addition to being the lead authors on the second study were co-authors on the other two. The pair have been preparing for this analysis even before Juno launched in 2011, during which time they built mathematical tools to analyze the gravitational field data and get a better grasp of Jupiter’s atmosphere and its dynamics.

All three studies were based on data gathered by Juno as it passed from one of Jupiter’s pole to the other every 53-days – a maneuver known as a “perijove”. With each pass, the probe used its advanced suite of instruments to peer beneath the surface layers of the atmosphere. In addition, radio waves emitted by the probe were measured to determine how they were shifted by the planet’s gravitational field with each orbit.

As astronomers have understood for some time, Jupiter’s jets flow in bands from east to west and west to east. In the process, they disrupt the even distribution of mass on the planet. By measuring changes in the planet’s gravity field (and thus this mass imbalance), Dr. Kaspi and Dr. Galanti’s analytical tools were able to calculate how deep the storms extend beneath the surface and what it’s interior dynamics are like.

Above all, the team expected to find anomalies because of the way the planet deviates from being a perfect sphere – which is due to how its rapid rotation squishes it slightly. However, they also looked for additional anomalies that could be explained due to the presence of powerful winds in the atmosphere.

This image from Juno’s JunoCam captured the south pole in visible light only. It’s a puzzle why the north and south poles are so similar, yet have a different number of cyclones. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

In the first study, Dr. Iess and his colleagues used precise Doppler tracking of the Juno spacecraft to conduct measurements of Jupiter’s gravity harmonics – both even and odd. What they determined was Jupiter’s magnetic field has a north-south asymmetry, which is indicative of interior flows in the atmosphere.

Analysis of this asymmetry was followed-up on in the second study, where Dr. Kaspi, Dr. Galanti and their colleagues used the variations in the planet’s gravity field to calculate the depth of Jupiter’s east-west jet streams. By measuring how these jets cause an imbalance in Jupiter’s gravity field, and even disrupt the mass of the planet, they concluded that they extend to a depth of 3000 km (1864 mi).

From all this, Prof. Guillot and his colleagues conducted the third study, where they used the previous findings about the planet’s gravitational field and jet streams and compared the results to predictions of interior models. From this, they determined that the interior of the planet rotates almost like a rigid body and that differential rotation decreases farther down.

In addition, they found that the zones of atmospheric flow extended to between 2,000 km (1243 mi) and 3,500 km (2175 mi) deep, which was consistent with the constraints obtained from the odd gravitational harmonics. This depth also corresponds to the point where electric conductivity would become large enough that magnetic drag would suppress differential rotation.

Based on their findings, the team also calculated that Jupiter’s atmosphere constitutes 1% of its total mass. For comparison, Earth’s atmosphere is less than a millionth of its total mass. Still, as Dr. Kaspi explained in Weizzmann Institute press release, this was rather surprising:

“That is much more than anyone thought and more than what has been known from other planets in the Solar System. That is basically a mass equal to three Earths moving at speeds of tens of meters per second.”

All told, these studies have shed new light on the Jupiter’s atmospheric dynamics and interior structure. At present, the subject of what resides at Jupiter’s core remains unresolved. But the researchers hope to analyze further measurements made by Juno to see whether Jupiter has a solid core and (if so) to determine its mass. This in turn will help astronomers learn a great deal about the Solar System’s history and formation.

In addition, Kaspi and Galanti are looking to use some of the same methods they developed to characterize Jupiter’s jet streams to tackle its most iconic feature – Jupiter’s Great Red Spot. In addition to determining how deep this storm extends, they also hope to learn why this storm has persisted for so many centuries, and why it has been noticeably shrinking in recent years.

The Juno mission is expected to wrap up in July of 2018. Barring any extensions, the probe will conduct a controlled deorbit into Jupiter’s atmosphere after conducting perijove 14. However, even after the mission is over, scientists will be analyzing the data it has collected for years to come. What this reveals about the Solar System’s largest planet will also go a long way towards informing out understanding of the Solar System.

Further Reading: Weizmann Institute of Science, Nature, Nature (2), Nature (3),