New Perspective of Jezero Crater Shows the Path Perseverance Could use to Navigate

On February 18th, 2021, NASA’s Perseverance rover set down on the surface of Mars. During the next two years of its primary mission, the rover will search the Jezero crater (where it landed) for evidence of past life on Mars. This will consist of collecting soil and rock samples from the preserved delta feature that formed billions of years ago from sediments deposited by flowing water.

The question is, where should it look for this possible evidence? A possible route the rover will take during its primary mission is shown in a series of recent images provided by NASA and the US Geological Survey (USGS). As illustrated in the image below, this path would take it from the cliffs that form the edge of the delta, up and across its surface towards possible “shoreline” deposits, and up to the rim of the crater.

Continue reading “New Perspective of Jezero Crater Shows the Path Perseverance Could use to Navigate”

What Happens if Perseverance Finds Life on Mars?

It all happened so fast! On Thursday, February 18th, NASA’s Perseverance rover set landed in the Jezero crater on Mars and almost immediately transmitted its first image of the Martian. This was followed by photos from the Mars Reconnaissance Orbiter and footage taken by the rover’s Entry, Descent, and Landing (EDL). Then there was the panoramic video, a sound recording, and deployed its Ingenuity helicopter, all in the space of a week!

But that’s nothing compared to what happened next. Shortly after the rover started drilling into the floor of the Jezero crater, Perseverance found evidence of fossilized bacteria! The search for life on Mars finally struck paydirt! Okay, that didn’t happen… Not yet, anyway. But what if it does? After all, one of Perseverance‘s main objectives is to search for evidence of past life on Mars. What will be the impact if and when it finds it?

Continue reading “What Happens if Perseverance Finds Life on Mars?”

Perseverance Seen From Space by ESA’s ExoMars Orbiter

A little over a week ago (February 18th, 2021), NASA’s Perseverance rover landed in the Jezero crater on the surface of Mars. In what was truly a media circus, people from all over the world tuned to watch the live coverage of the rover landing. When Perseverance touched down, it wasn’t just the mission controllers at NASA who triumphantly jumped to their feet to cheer and applaud.

In the days that followed, the world was treated to all kinds of media that showed the surface of Mars and the descent. The most recent comes from the Trace Gas Orbiter (TGO), which is part of the ESA-Roscosmos ExoMars program. From its vantage point, high above the Martian skies, the TGO caught sight of Perseverance in the Jezero crater and acquired images that show the rover and other elements of its landing vehicle.

Continue reading “Perseverance Seen From Space by ESA’s ExoMars Orbiter”

What a Geologist Sees When They Look at Perseverance’s Landing Site

Geologists love fieldwork. They love getting their specialized hammers and chisels into seams in the rock, exposing unweathered surfaces and teasing out the rock’s secrets. Mars would be the ultimate field trip for many of them, but sadly, that’s not possible.

Instead, we’ve sent the Perseverance rover on the field trip. But if a geologist were along for the ride, what would it look like to them?

Continue reading “What a Geologist Sees When They Look at Perseverance’s Landing Site”

Since Perseverance is Searching for Life, What Will it Be Looking for?

You have to be careful what you say to people. When NASA or someone else says that the Perseverance rover will be looking for fossil evidence of ancient life, the uninformed may guffaw loudly. Or worse, they may think that scientists are looking for actual animal skeletons or something.

Of course, that’s not the case.

So what is Perseverance looking for?

Continue reading “Since Perseverance is Searching for Life, What Will it Be Looking for?”

Perseverance has Landed. Here are its First Pictures From the Surface of Mars

They’ve done it again. After a journey of nearly seven months for the Perseverance rover, the Navigation and Entry, Descent and Landing teams successfully guided their intrepid traveler to a pinpoint landing inside Jezero Crater on Mars on February 18, 2021.

And within minutes of the landing, Perseverance sent back two images from the front and rear Hazard Avoidance Cameras, revealing its surroundings on the Red Planet.

Continue reading “Perseverance has Landed. Here are its First Pictures From the Surface of Mars”

NASA’s Perseverance Rover: The Most Ambitious Space Mission Ever?

When it comes to Mars exploration, NASA has more success than any other agency. This week, they’ll attempt to land another sophisticated rover on the Martian surface to continue the search for evidence of ancient life. The Mars Perseverance rover will land on Mars on Thursday, February 18th, and it’s bringing some very ambitious technologies with it.

Continue reading “NASA’s Perseverance Rover: The Most Ambitious Space Mission Ever?”

Water Shaped Features on Mars Much Earlier Than Previously Believed

In two days (on Thursday, Feb. 18th, 2021), NASA’s Perseverance rover will land on Mars. As the latest robotic mission in the Mars Exploration Program (MEP), Perseverance will follow in the footsteps of its sister mission, Curiosity. Just in time for its arrival, research conducted at the Southwest Research Institute (SwRI) has shown that Mars’ surface was shaped by flowing water several million years earlier than previously thought.

Continue reading “Water Shaped Features on Mars Much Earlier Than Previously Believed”

Astronauts Will be Able to Extract Fuel, Air, and Water From Martian Brine

A little over a decade from now, NASA plans to send astronauts to Mars for the first time. This mission will build on decades of robotic exploration, collect samples from the surface, and return them to Earth for analysis. Given the immense distance involved, any operations on the Martian surface will need to be as self-sufficient as possible, which means sourcing whatever they can locally.

This includes using the local water to create oxygen gas, drinking water, and rocket fuel, which represents a challenge considering that any liquid water is likely to be briny. Luckily, a team of researchers from the McKelvey School of Engineering at Washington University at St. Louis (WUSTL) has created a new type of electrolysis system that can convert briny water into usable products while also being compact and lightweight.

Continue reading “Astronauts Will be Able to Extract Fuel, Air, and Water From Martian Brine”